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-7kernel and a solution by collocation with the corresponding kernel are Identical.
BJerhammar’s method is generalized by using other kernel functions , and each
minimum norm solution Is shown to correspond to one specific set of degree
variances In collocation.

The impulse approaches (reflexive prediction, Dirac method) of
Bj erhammar are presented. )The kernel function of the non-singular Dirac

/ method is obta ined from thalin collocation by substituting C 5 1(211+1) (r 92/r 3 r 1 )fl + .~
by Ic5 I (211+1) (r5 /r 3~ 

+ ~~. Hence the Dirac kernel is not symmetric In contrast *

to the one In collocation. Moreover, it is shown that for a given radius r8 of
the Bjerhammar sphere, the Dirac method gives a better conditioning of the
equation system. It is demonstrated that the two solutions are identic~ ~ for
Poisson’s kernel, if the depth of the Bjerhamma r sphere in coil cation is half
of that in the appl ication of the Dirac approach. The solutio.. by collocation is
therefore twice as sensitive to the choice of radius as is the latter method.

~~~In the theoretical case with a continuous coverage of observations at
the su rface of the earth, it is shown that both the Dirac method and collocation
give a unique solution for any choice of positive degree variances of the kernel
functioj~s, whenever the solutions exist. However, the inte rmediate solutions
fo~~Ag~ and X at the Bjerhamma r sphere do not exist in general. If collocation
is applied by solving the Wiener-Hopf integral equation, a convergent solution
is proved outside a sphere. However, Inside the bounding sphere of the earth
the convergence Is still not proved.
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(1. 2) V j = C j (C + D) ’ Ag

where .5

c = coy (V 1 , Ag)

C = cov (Ag,~~ g)

D = error cova riance matrix.

In particula r we predict gravity anomalie s by:

(1. 3) ~ g 1 = C 1 (C + Di’ ~ g

where the elements of c and C are given by the spatial covariance function for
the gravity anomal ies:

(1.4) C 13 ~~~ C n (r e ~/ r j r 3)~~
2 P, (CO s ~ :~)

where c~ are the so-called degree variances of the gravity anomalies defined
accord ing to the definition in Jj eiskanen and Moritz (1967 , p. 259):

(1.5) c =  ~~~~- jrJ’~~ 2 d a

where ~~~ is the anomaly Laplace harmonic on the Bjerhammar sphere.

The pu rpose of this paper is to study the relations between some of
Bjerhammar ’s solutions and collocation. We start with solving Poisson ’s
integral equation (1. 1) in different ways according to Bjerhammar.

2. Bjerhamma r Solutions at the Inte rnal Sphere

In the numer ical appl ication of (1.1) Bjerhamma r used a finite set of
blocks on the internal sphe re with a constant value of ~ g* over each block. In this
way the following matrix equa t ion is obtained from (1. 1) for m observations and
N surface blocks:

(2. 1) A Ag* = Ag
I N  N j
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where

Ag = vector of observed gravity anomal ies

Ag* = vector of unknowns

A = coefficient matrix w ith elements A~
2 2rL - rB dS(2. 2) A~ = 

4n r~ H
AS k

AS k = the surface of block k

Applying the mean value theorem of integral calcuh s formula (2. 2) may
be rew ritten:

2 2r2 - rB
(2. 2a) A~~= 34 ¶~~ r~ rLk

where k refers to a certain mean value point P~ inside AS ,. In practice we
may approximate P~ by the center of the block k. If the matrix A has full
rank there is always a solution of (2. 1) for N � m. For N = m we obta in the
unique solution :

(2. 3) Ag* = A 1 Ag

where A ’ is the Cayley invers e of A.

For N> m the solution is not uniqu e unless an additiona l condition is
satisfied (condition adjustment, Section 2. 2) . Finally, for N < m and ful l rank
of A the least squ ares solution minimizes the squa re sum of the res iduals (see
Section 2. 3) .

2.1 Generalization

By expand ing the Poisson kernel into a series of Legend re’s polynomials ,
formula (1. 1) becomes :

2
(2. 4) Ag3 = f J’$ Ag*~~ (2n+1) (~ 54 Pn (cos 4)) (1 5

~.
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We may also expand Ag* into a series of Laplace ’s ha rmonics (we assume that
the expansion is convergent) :

Ag*

Due to the orthogonality of the spherical harmonics when integrated ove r a sphere :

p~’ d S = O  fo r n~~ n’ .5

(2. 4) may be rewritten in the follow ing way:

(2. 5) Ag3 = 
~ 55 u*~~~/ i ) ~~ * 

(

~~~~ B )~ (coS 4)) d S

(2. 6) = 
________

~~~~~~~ 
Ic~~/~2n+i~

In contrast to the degree variances in collocation (c ,~), whic h a re a priori defined
by formula (1. 5), the parameters c ,“ introduced in formulae (2 . 5) and (2. 6) of the
generalized Bjerhamma r method , are more or less arbitra ry. Formally the
conversion from (2.4) to (2.5) is valid for any c ,~ such that (2.6) and the kernel
of (2. 5) converge. However, from a practical point of view it will hardly be
advisable to solve (2 . 5) for a u~ that is less smooth(with less attenuating higher
degree terms) than Ag*. Al ready the solution for Ag* is questionable in the
continuous case . See Section 5, Molodensky et a!. (1962) and Pick (1965) . In
the discre te case a solution is always possible. By changing c a variety of
solutions to Bjerhammar ’s problem are obtained. These solutions for u ”~ are
completely in accordance with the solution s for Ag* in (2.1) — (2. 2).

Exa mp:~~ The inverse Stokes function. We insert:

=
rB

-5-
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into (2.5) and (2.6) (with lower limit n = 2 of the summat ion). Then we obtain
(for d S =  rs~d0) :

Ag3 = M (r3, 4)) u’~ d 0

where

M (r3,4) ) = .
~
-i-— ~~~(2n+1) (n-i) (-p) P~ (cos 4)) 

. 

.5

and

u* =

~~~~ 

rB Ag fl 
~~~~~ T~ = T*

where we have introduced the notation (He iskanen and Moritz , ibid. , p. 97) :

T~ = rs Ag~ /( n-1)

T~ being the Laplace ha rm onic of degree n of the ( fic titious) distu rbing potential
T* at the Bjerhamma r sphere.

M may be written in a closed form (Sj oberg, 1975, p. 107):

M ( r 3 , 4 ) )  = 
S:r j 

[ 3o) + + 2

where

£
2 = 1 — 2 s t + s 2

S = r~/r 3

t = cos 4)

Note . In SJ~ berg (ibid. ) the term n = 0 is included in M.

Further examples of u~ are given in Table 2.1.

—6-
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2.2 Minimum Norm Solutions

As previously stated, a matrix equation

(2. 7) A u ”~ = Ag , m < N
m N  N i  :1

does not have a unique solution unless an additional condition is imposed. We .5
may define this solution as the one satisfying the following cond ition :

(2. 8a) t1u*~12 = 1. 
~~~~I~~~AS k minimum

.5 or, with matrix notations

(2. 8b) (u*)
T 
Q

_i 
u~ = minimum

where

Q~~=! ( A S2 )S A SN

From least squares adjustment we obta in the following solution of (2 . 7) with the
.5 

condition (2 .8) (see for instance, Bjerhamma r, 1973 , Ch. 12) :

.5 (2.9) u~ = Q A
1 (A QA T

Y 1 Ag

.5 with the minimum norm

(2.9a) (u *)1 Q~’ u~ = Ag1 ( A Q A ) ’ Ag

Subsequently, d ifferent solutions are obtained by changing the number of
blocks at the internal sphere. In the orig inal paper by Bjerharnniar (1964) most
stud ies were restricted to the non-singular case (N = m). Condition adjustment
(N > m) was treated in 1968 and 1969. It is obvious that these solutions from (2.9)
are generally more cumbersome to compu te than (2.3). However , the compu ta-
tional effort Is drastically reduced to that in the non-singular case , if we let N
approach Infinity for well-behaving surface elements. This we show next .

—7— 
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We rewrite (2.9) in the follow ing way:

(2. 10) u * = Q A T X

where

X (AQAt)~~ Ag

(2 .11) (AQAT )13 = S~~~ (A)j k (A) Jk As~ ’

The coefficients (A) 3k are given by the generalization of (2. ) and (2. 2a) by
(2. 5):

(2.12) (A)Jk = ~~~~~~~~~~ c~* ~~~~~~~~~~~~~~~~~ (cos 4)) AS k

By letting N go to infinity in such a way that the largest diameter of all A Sk
approaches zero it is shown in the Appendix , Proposition A. 1, that (A Q AT )~3
becomes:

(2. 13) C~3 = llrn (AQ AT) 13 ~~~~~~~~~~~ (~ ~~~
Thus we obtain in the limit:

(2. 13a) X~~ C ’Ag

.5 
where the elements of C are given by (2. 13). Applying (2. 7) for the pred ict ion of
new anomalies from the original set Ag we obta in:

or

(2. 14) 1Ag 1 c1 C~~ Ag
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where

c 1 l i m A 1  QAT

The elements of c 1 are also given by (2.13) . Furthermore It follows from (2. 9a)
tha t the minimum norm in the limit is given by:

(2. 15) lu” 1
2 

= Agt C ’ Ag

We notice that (2. 14) and (2.13) are exactly the solutions obtained w ith the
collocation formulae (1.3) -(1.4)  with c~ substituted by c,,” . Hence , for each
type of degree variances (C ,,”) in collocation, there is an identical minimum no rm
solution in the generalized Bjerhamma r approach. Some of these relations are
given in Table 2.1. The derivations are given in Sj~berg (1975).

Table 2. 1

The Relations Between the Degree Variances in Collocation
and Some Minimum Norms in the Generalized Bjerhammar Method

I c ,,*/ (2n+ 1) Norm Explanation of Symbol

1 Ag” gravity anomaly
(n-1)/re T” distu rbing potential
4 n ( n— 1)/( 2n+l ) density layer
411n (n-1)/rB(2n+ 1) double layer
(n-1)/(n+1) gravity disturba nce
V(n- 1)/ In(n + 1) 6 ” deflection of the vertical
(n-1)//(2n+ 1)(n+ 1) 6* potential gradient

n! (n-1)/(n-H/) ! ~ T” the L’ th derivative of T

y = normal grav ity at the reference ellipsoid

t from Sj~berg, (1975) .

-9- 
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Subsequently there Is a duality between the choice of degree variances in
collocation and the minimum norm in the generalized Bjerhamma r technique.
Such an appr~*ohwith a minimum norm was also emphasized by Kra rap (1969) .

Remark. c ,, of formula (1.4) was replaced by (2n+1) c~ in Sj~berg (Ibid.) and
by ( 2n+1) a ,,~ by Lauritzen (1973, p. 73) and Bjerhamma r (1974 and 1977 a, b).
See also Kra rup ( Ibid .).

Also in the general ized Bjerhammar technique the observation errors
can be taken into account [cf, formula(l . 2)j. In this case we sta rt with the model :

A u ” = Ag -

where

E ( 1 }  = D

Rearrang ing this equation as:

lu *1
( A , I) 

~_ J  

= Ag

we readily obtain the solution:

(2.9b) [u*] = [QAT] ( A Q A T + DI’ Ag

which minimizes

(U” ) ’ Q ’ u” + f
T D ’

The predictions are given by

(2. 16) V 1 = A Q A’ (A Q A ’ 
+ DI’ Ag

and for N— ~ this solution and (1.2) are identical. In this case the minimum
norm becomes :

(2. 17) Ag’ C ’Ag + E T D~~ (

.5 - 
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2.3 Least Squares Solutions for u”

If we apply formula (2.7) with in > N, this matrix equation will not In
general be consistent. Add ing a residual vector , we obtain the following model:

(2. 18) A u ” = Ag - , m > N , E [ f f
l } = 

~~

U N  Ni .1 ii

This system may be solved with ordinary least squares adjustment by elements
with the solution :

(2. 19) ~~“=  (A T PA)
_ 1

AT P Ag

which minimizes the square sum of the residuals (f ’ P E). The va riance of unit
weight (02

) is estimated by:

(2.20) s2 = Ag’P ( Ag - A~~* ) / ( m —  N)

and the covariance matrix of u ” afte r adjustment is estimated by:

(2.21) Q~ = s~ (A
’ P

All these derivations follow from elementary least squares adjustment (see for
instance, Bj erhammar, 1973, Ch. 11) .

The solution ~~“ can now be used for the pred ict ion of derived quantities
(v 1) in an arbitrary position Pt :

A A(2. 22) v 1 = A 1 u ”

where A Is the operator (vector) that relates v 1 to u ”.

The prediction variance may be dete rm ined In the following way:

E j V j -~~~j~~’ v j - A j ( u + f ~)

— 11—
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(
~
‘ = v~~+ A1 (uu

T + ~~ U )  A l —  2A 1(u + €~) V ;
T

Taking the expectation of both members we obtain the prediction variance:

m 1
2= C7V~ +

where

= E~~v~~3

C~~ = E [ u u ’)

Cu , E ( u v ’l

Furthermore we have assu med that E [E~ v 1T )  0. The prediction variance may .5
be written:

(2. 23) ~~~~~~~~~~~~~~~~~~~~~

where

m~~=~ r~,1 + A 1C,,,, A - 2 A t C u,

The first term of (2. 23), which is caused by the error of u”, is easily determined
in the adjustment. The second term (m,~) is due to the error of A 

~~
. The

determination of in ,~ requires that the covariance relations are known.

The least squares solutions are favorable first of all when a large number
of observations (m) are available. It should be noted that the solutions for m > N
do not Include pure prediction. A filtering of the data is always present In this
type of prediction.

2.4 Impulse Approach

Bjerhammar (1974) introduced a method, where the unknowns (U”) are
located in diec rete points at the internal sphere. This method, called the Dirac
method, gives the following model:

-12-
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(2. 24) u ” (~) =~~~u% 6 (i- r k)

where

r = (ru , ~~‘, A)  = coordinates of a current point at the internal sphere

r k = (r ~,~~ ,A k )  = coordinates of a selected carrier point Pk at the
internal sphere

.5 u~ = unknown associated with Pk

N = number of unknowns

6 ( )  = Dirac ’s delta fu nction , defined by

(2.24a) ~i_ $~~
“ ( r )  6 (1 - i ,) d a  = u” (F,)

Inserting (2.24) into (2.5) we arrive at

(2. 25) Ag~ = ~~~~~
Uk” K (rj, r,)

where

(2.26) K (i~,Fk) = 
‘5’ /(2 n-t-1) c ,~’ (-~!.) p~ (cos 4~,)

For m observations (Ag~) (2. 25) gives an exact matrix equation which may be
solved by means of condition adjustment , least squares adjustment or direct
solution dependent on whether m < N, m > N, or m = N. A generalization of
the method is obtained if we also allow for carrier points located outside the
Bjerhammar sphere (reflexive prediction, Bjerhammar, 1974).

It Is obvious that this method is a generalization of the commonly used
buried mass point method. In act, the latter Is obta ined In the special case
(cf. Table 2. 1).

= conøt. (n-1)/I~iil+1)

—13—
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The non-singular Dirac method with carrier points located at the
intersections of the internal sphere with the radius vectors of the observations
is very similar to collocation. The au to-covariance function for Ag in colloca-
tion (with internal sphere radius rb):

(2. 27) C (j, i) =I c~~(r~ /r~r t)~
+2 P~(cos 

~~~~ i)

.5 corresponds to the following kernel function in the Dirac method:

(2. 28) C (j, i) =~~~ I (2n+1) C ~ (r0/r~)
”
~
2 
P~ (cos ~b~)

where r0 is the selected internal sphere radius (not necessarily the same as re).
Hence, C (j, I) of (2. 27) and (2. 28) are identical for:

c~~= c,* = 2n+1

and

(2. 29) r0 = re~/r t

Consider the case r1 = r = radius of the mean earth sphere:

r0 = r - h 0

and

ra = r —

where h 0 and ha are the depths of the internal spheres from the mean earth
sphere . By insert ing these expressions for r0 and r~ into (2. 29) we obtain:

h0 2he - he2/r 
.5

or (after omitting the last term)

(2.30) h 0 2h e

—14-
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Thus we have shown that in the special case c ,. = c 
~
“ = 2n+1 and the radi i of

the observation points are constant (r) , the kernel function C (j , I) of the Dira c
method and collocation are identical whenever the depth to the Bjerhammar
sphere in the previous method (h 0) is twice that in the latte r metiiod (ha). This
result holds also for the predictions of the two methods (see Sections 5 and 8).
See also Bje rhammar (1977 , a,b).

From nu merical point of view it is of importance that the kernel function
(2 . 28) is unsymmetric in contrast to (2 .27).

3. Stability of the Solutions

It is of great importance for the prediction results tha t the matrix
equations are well conditioned. In this section we are going to compa re the
stability of the following systems in different cases:

(3. 1) A u * = A g

and

(3. 2) C X  = Ag
U I  II

These equations were introduced in (2. 7) and (2. 13a) . Formulae (3. 1) (in = N)
and (3. 2) (N = ) may be rega rded as the extreme cases of (2. 7). From the
derivations in Section 2. 2 we may also consider (3. 2) as an intermediate system
of equations in collocation.

A sui table measure of the stab ility of a matrix system is the condition
number defined as:

(3.3) x=

where A refers to the elgen values of the coefficient matrix of the system (A and
C). The condition number has the following bounds :

where the lower bound is the ideal a ituation and Is a completely unstable
(singular) system. Our main problem Es therefore to determine the elgen values
A .1~ and A ,1~.

.5 
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We start with a two-dimensional example. We assume that ~g Is
observed at in regularly distributed points on a circle of radius r. The
unknowns (u*) are located on a circle of radius r~. Applying the 1*ipulse
approach (formula (2.25) with m = NJ the system of equations becomes:

(3.4) (6~- 9~) U,” = Ag~ ; j = 1, 2, ... , N

where K (O~ - 9,) is the two-dimensional kernel function corresponding to ii ” and

8p = p 2r r / N

The Fourier series of K is:

(3.5) K (9) rrr ’5~~~ b e~
8

where

(3.6) b~~= ~ 5 K ( O ) e t~~~d 9

Furthermore, the elgen values (A 2) of (3. 4) are given by:

(3.7) V K  (6~ -6,) = A 2 X~~ ; 2, j = 1, 2, ..., N

where X~~ is the j th element of the Lth eigen vector. Let us try :

(3.8) X~~~= coa x = (eI
~+ e~~ )/2

where

x=j L2rr /N

Using the relation

N 
~~ 

N if t= q+Np ; p = O , ±1, ±2,
(3.9) 5’ e~~ir~ ~) 

= {
0 otherwise

J = 1

-16-
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we can easily arrive at:

~ x~~x~~= 
~ 

N/2 if i = q

0 othe rwise
:= 1

Thus (3. 8) satisfies the necessary property of eigen vectors being orthogona l to
each other. We have also shown that (3. 8) should be normed by /2/N in order to
be the eigen vectors of (3. 7). Finally , X must satisfy (3. 7) for some eigen
values A 2. Inserting (3 .8) and (3.5) into (3.7) we obta in from the left member:

N

e~~ ~~ = N e~~~ N 
~~~~

bL+Np .5

Here we have used (3.9). Thus we obta in :

A2 N~~~~~b2 + NP

where b~ is given by (3.6). If K is Poisson ’s ke rnel , then (Seeley , 1966 , p. 14):

b~ = s 1~ = (rs/r)~ ’

and

A 2=

The sum is given in a closed form in the Append ix, Co rolla ry A.2 • We obtain:

A 2 = N (S~~ + sN _ L )/( l - ~~N ) , 2= 1, 2, - . . ,  N

The condition number is finally given by:

x l = ( 1÷5 N ) / ( 8 8~ s~~
8)

_ _ _ _ _ _ _ _  - . . . -. - -  ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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where

B = (*) = integer part of N/2

An analogous derivation of the condition number of (3.2) gives:

(1 + 5
2N

)/(s
28 

+ s
2

~~~
2B

)

so that for large N

It is obvious that the system (3. 1) is more stable than (3.2) for a given depth to
the Bjerhammar circle.

Next we proceed to the planar cases of (3.1) and (3.2). We are going to
use an approximate similarity transformation of the coefficient matrix to diagonal
form.

The operator C is said to be unitarily equivalent to S, if:

S = U C U -l

where S1~ = A 1, ö~,., ~~ is the Kronecker’s symbol and U and U
1 are unitary

transformations, inverse to one another. For a matrix it is a similarity
transformation to diagonal form. According to Moritz (1966) and Schwarz (1971)

.5 such a unitary equivalence exists between c(x,y) and its Fourier transform:

-t (x ~+ >’v)(3.10) S(u,v)= U .c (x,y)= JJ c ( x ,y) e d xd y
-~~~-~~

This formula may therefore be used for an approximate determ ination of the
eigen values of (3.1) -(3.2). If m 0 and n0 are the numbers of blocks in the
x- and y- directions, we obtain (cf. Schwarz, ibid.):

(3.11) A 1 = a  ~~~( 
2 TT n 2~~rn

\2n 0-i- 1 2m 0+l

—18— 
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where

0~~~ m~~~ m 0

and

l ic li

The covariance functions will be used in the planar approximation. Furthermore,
equal area blocks are assumed with n0 = m 0.

We are now going to determine the condition nu mber for the Poisson
kernel. This kernel corresponds to c ,, = 2 n + 1 and the minimum norm of Ag”
(see Table 2.1). The planar equivalence to the operator A of (2.1) iS:

(3.12) A =SS a (x,y) dxdy

where

(3. 12’) a (x,y) = / (x2 + y2 
+ h2)

h = z + b / 2

b = 2 (R— re)

R = mean earth radius

r = radius of the computation point

r8 = radius of the Bjerhammar sphere

z =

Formula (3. 12) has the following Fourier transform:

S ( u , v ) = S S a ( x , y ) e x P [ _ i ( u x + v y ) } d x d y

(3. 13)

= 2
~~hS 

r 
~ J 0(~~r )dr= 2~~exP[-h~~}

~ 
(r2+h2)’2

—19—
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I

where

r = 1x2 + y2 , = 7u a +

and

Jo (w ~) = zero order Bessel function.

.5 
Hence

A 1 = 2ri a exP [-2TT h/n3+m5 /(2n0+1)}

and

(3.14) x = e x p [2 T v”~~h n o/(2no +1)}~~ e_p [, /~~h~

The planar approximation to the Poisson covariance function is
(Moritz , 1976, p. 41):

B/Z~(3.15) C (x,y) = C (r) = ___________

(1 + ra/Z~)3/’~

where Z = z + 2~~ + b and B = 2 Fl2.

The Fourier trans form of the covariance function is:

(3.16) S (W) 2 T T B e X P ( - Z w )

Thus we obtain:

= ex p [2rT /~~Z no/(2n0+1))

.5 Assuming that Z~ Z~ Z we have Z 2ha nd

(3.17) x~~= e x P ( 4 ~~~~ h n 0/( 2 n 0 +1) 1~~ e x P [ 2 ~~~~h )

so tha t

(3. 18)

I
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From formula (3. 18) it is obviou s that the condition number (x e) of the “original”
equation (3. 1) is squared by letting the number of blocks on the internal sphere
approach infinity (N-~~) (and then solving the system (3. 2)). A considerable loss
of stability is achieved. Again we emphasize that the equation system (3. 1) is
generally unsymmetric in contrast to (3. 2), which fact has to be considered in
the numerical solution of the system. It is not recommended to form normal
equations in (3. 1) in order to obtain a symmetric system , because th is procedu re .5

will increase the condition number to that of system (3.2) . (3.1) should be
solved directly, for instance, by Gauss elimination or in an ite rative way by
successive approximations.

3. 1 The Effect of Smoothing (Nois~~

We assume that the matrices A and C of formulae (3. 1-2) are substituted
by:

and

C = C +  B D

where the elements of D are given by:

k if i = j  , k > 0
d 1~~= {

0 otherwise

and B = 2R2 Isee formula (3.15)1.

Then ~ and ~ correspond to the kernel functions:

ä (x,y) = a ( x ,y) + k 6(x,y)

and

~ (x,y) = c (X,y) + B k  O ( x ,y)

.5 

- with the spectra

S~(u,v) = S~(u,v) + k

~0(u,v) S~(u,v)-+Bk

-21-
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and the eigen values
- (a) (a)

= A .  + a k

_(c) (°)
= X~. + aBk

Here 6 is the delta function and S, A and a are the same as in the previous section.
In this case we obtain for the Poisson kernel (cf. (3. 14) and (3. 17)1:

-.5--K11 k + 2 r e xp f- iy h~4 .} < exp (I~~~h )

and

k + 2rr
Z Ø ’

~~~ k+27~exp f-2v~h
’
~ ~ ex p f2 / 2 r~h )

We notice that the smoothing stabilizes both systems of equations (cf.
Section 6.3).

4. On the Convergence of an Iterative Solution

In this section we are going to investigate a condition for convergence of
an iterative solution of the matrix equation (3.2) :

(4. 1) C X = A g

Using the ordinary method of successive app roximation, we obtain:

and 

Ag + (I-C) X~
’
~~ ; k= 1, 2,

A x~~= x~~- ~~~~ = (1-C) (X
(
~~

1) _ 
~~~~ -

(I-C)~~
1 (X~~-X~

°
~)
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Hence

It Ax~~lI lii — c Ik_ l j x (1) _ x~
°
~ I i

A sufficient condition for the convergence of (4.2), i.e.

(ic)
lim lAX ii = 0

k —..

is therefo re

iii — C 11< 1

or

max 5’ Iô jj _ c jj !< 1

Now

r J 1 — c j~ I , if i = j
J O j j - c j j l  =

Ic i~ ~, if i � j

so that the condition may be written:

(4. 3a) ~
‘ j c 

~ 
< 2 , if c 

~ 
> 1

and

(4.3b) 2cjj >~~ Ic ij i , if c 11~~1

For finite C j j  we may always divide each row of the equation system
with a sufficiently large number to ensure that the diagonal elements of C are equal
to or less than unity. Hence we can limit our study to the cond ition (4. 3b).

First, we study this condition for Poisson ’s Integral equation for the
circle (Sealey, 1966, p. 14):
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(4.4) Ag3 = 5  a (j,i) Ag” dO 1

where

1 1_ s 2 1 i — s ea (j, i) 
2r~ 1+s~—2s cos~~ 3 

= 

~~~ Js—e~~~ 12

s =  r9/r 3 ( < 1)

13 = -

Suppose tha t we apply (4.4) in a discrete approach with equal spacing between the
N unknowns (Ag”,). We obtain:

(4.5) A Ag” = Ag
IN  N i  ii

where

a i( 
~~

—(4.6) A 3, = a ( j , k ) A 9  = (1—s )/Nts—e 12

A 0 =  2 ri /N 
H1

6,- = 2rk/N ; k = 1 , 2,..., N

In the non-s ingula r Dirac approach (N = m) we arrive at the following condition from
(4. 3b) and (4.6) (fo r 9j = 0):

2 1~ s~ > 
i~~~’ i — s e

m (1—sr m i~~ 

~~
_ t6~ ae

.5 or -

(4. 7) S ( m ,s ) =  -~- ~~
‘ 1-s 

- 211÷s 
~m m(1— s)

.5 
The Poisson kernel has the following Fourier series:

‘i 
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~ ~— s~ = ~ S ”’ e~’~~m m

- ‘ Furthermore

~~
‘ 
e~~

’
~~” = {

m If n=mxj , j =0, ±1, ±2,
0 otherwise

k 1

so that (4 7) becomes

S(m,s) = 1±2 ’
~ si’ - 2 1+s 

= 1-f’~~ - 2U+s)
m (1—s) 1—s m(1—s)

Subsequently, for la rge values of m the critical relation between m and s with

S(m 0,s)=0

is given by

(4. 8a) m 0 = 2

or

(4.sb) s= m — 2
m+2

The corresponding relation for collocation is obtained by substituting s by S2 
j~~~

the previous formulae. The results are shown In Table 4.1.

For comparison we also derive the relation between m and s in the case
.5 of condition adjustment (N > m). Then we arrive at the following condition from

(4. 3b) :

I

S (m, N, 5) = max ¶ (AQA )13 -2(AQA511 < 0
3=1

where
N

(AQA ’) 13 = N~~
’

A I ,  A 3,

-25-
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Table 4. 1

The Relation Between the Numbe r of Observations (~~ o) and
the Ratio h/a Compared to the Dirac Method and Collocation”

Dirac Method Collocation .5

m 0 s h l+s s h
a rrs a

10 0.667 0.796 0.816 0.708
100 0.961 0.650 0.961 0.643

1000 0.996 0.638 0.99 8 “ .637
10000 0.9996 0.637 0.9998 0.637

1 2/rr 1 2/rt

* h = r - r ~ and a=2 rr r/mo

1 —A 1, = 
N(1—2scos~ 1,+s2)

4~, = O~ - 8 , = -
~~~~~~

‘
_ !~~~~ = 2 1T(ip -k )/Nm N

p = N/m (integer)

The sum S (m , N, 5) is given in the Appendix, Proposition A. 3. For large N .5
we have, approximately:

S ( m ,s)~~ 2 - r n  + - _±
Th < 0

i— ~~ • 1—s

or

m < 2 1—s ~~~~~~~~~

1+521 1_ 8 2

—26—

• 
~~~~~ 1;’~~~~, ” ”’ - ~~~~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.5 .5.

.
-. -

- .

‘ . 5 - -  - - .5 _ , _~~~~-, _:.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.5 -.- —.5--- ‘ —‘.5 , --.5-.--, . 5 -. —.5.—-- .5- -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~~~~~

For large m we finally arrive at:

1+82
m <m 0 = 2 1-s~

and

~~ 
> ____

m+2

These are the limiting relations between s and in when using coUocation [cf.
(4. 8 a—b)].

What is the relation between s and m that satlafies the conditIon (4 ,3  b)
for the general ized Integral equation :

(4. 4~ Agj = J ’ a (j , k ) u * d O ,

where

(4.9) a (j,k) ~~~ s~
”1 
~~~~~~~

Following the previous derivations, we obtain in the non-singular case of the Dirac
method (cf. (4.7)] :

S (m , a) =
‘
~:~

/
~

i. ~lJI a - ~~ - ~~~~~ < 0

Thus the suffic ient relation between s and m for the convergence according to
(4. 3b) is very much dependent on c’~.

Example: J~~~ I n I + i

S (m ,s) = ~~Iilm s131’ +~~~:~
3
~ — -~ - I~~~ l sIf I _

~~ 9in~
)

= (s ~~~~
-. + i) (~ 

~iJi ’ 
~~~~~~ s’~’)

3— —
~~
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I

= (s~~- + i ’ ( 1+2 -.~
._ - -~ - - I

ds ) 1—a ’ m m 1—s

= 2 m  ~ ~
(1~~s ) 2 m ( 1. 5)2 1—8 ’ m m 1—s

For large m we have approximately

48 4sm - 2 -  - — < 0
(l~5)~ 1—s

or

m < m o = 2 + 48
1~

2
~~L_

and

r
5 >  S~~~= 1 — 1 1 —

~‘

For m ~ 
-
~~~, s ~ 

-. 1 and h/a -. 2/n . Again we obtain 2 it as a sufficient
ratio between the height of the observations and the spec Ing of the observations
for convergence in the continuous case (Cf. Table 4.1).

We now Investigate Poisson ’s integral equation in the planar approximation
(see formula (3.12)) . We assume that a square of side B Is divided into N sur~ ceelements of side b = B/N , where N’= /1i . Then we obta in the following coefficients :

.5 

A 3, = b2 h 
=

2n[( x ,~
—

= c/2n [(j~~-k 1) 2 + (J , .~~~~~
2

+~~
a

j
3/a

where

c = h/~

x 3 —  j , b

y 3 = J , b
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In the non-singular case (N~ m’) the condition (4.3b)becomes (for j ,=j ~, = m72):

I

I _ _ L .-02TT -
~ [ ( m/ 2 _ k x) 2+ (m / 2 _ k y ) 2 ÷ c 2

J3/2 Tic2
~x i k~=1

The critical relation between in’ and c is shown in Table 4.2.

Table 4 .2

The Ratio c = h/b Satisfying S (m ,c) = 0 as Given
for Diffe rent m. b=  block size , h =  height.

m Dirac Method Collocation

50 0.57 0.285
100 0.54 0.270
500 0.52 0.260
1000 0.52 0.260
5000 0.51 0.255
10000 0.50 0.250

The result of the com~*itations is that the ratio h/b should be less than
0. 5 for an uncritical convergence of the non-singular Dirac solution with Poisson ’s
kernel (see also Koc h , 1968). If the method of collocation is used, the ratio should
be less than 0.25. In this study we have based the results on the condition (4. 3b)
for a solution by successive approximations. However , Schwarz (1971) emphasized
tha t more gene rou s ratios (h/b) may be allowed by using other nu merical methods.
The figures given in this section should therefore, first of all, be used to compare
the stability of different methods (Di m e method , condition adjustment , collocation)
with each other.

In conclusion , the Dirac method with ( m =  N) gives a more stable solution
than collocation for a given radius rs. In the case of condition adjustment ( N >  m)
the stability of the Dirac method is roughly the same as for collocation . This study
was restricted to the PoIsson ke rnel functions , and the cond ition ing changes with
the choice of degree variances (C n and c a”) . In gene ral , however , the above
tendency can be expected for an arbitra ry type of kernel function.

—29 -

- ‘ .5 —- -.5. —-——.5-.5-p----- —-.5-- - -



5. Predictions According to Bjerhammar

Us ing the collocat ion formula (1. 2) any geophysical quantity v 1 can be
predicted from a vector ~ g of gravity anomalies by:

(5. la) V 1 C t X

whe re

(5. Th) X~~ ( C + D ) ’Ag

In the generalized Bjerhammar methods the unknowns X of collocation are replaced
by the unknowns u ’~ at the internal sphere (see section 2) . The prediction of v 1
becomes accordingly :

(5.2) v 1 = Fi u*

or

(5. 2’) v 1  =~~~ Fi~ u~

where F 1 is the relevant coefficient matrix (with elements F1,) relating u * to v
Formula (5. 2’) is the discrete form of the integral fo rmula:

(5.2”) v t = f~~fft~u*dS 
-

and the ke rnel function I ~ and the coefficient F~ are related by [cf. fo rmulae (2. 2)
and (2.2a )3 :

(5. 3) F1, = ~ d S  =

~~Sk

where k corresponds to some mean value point ins ide ~~S,. In practice this point
is approximated by the center of A s , .  The function f 1, can be derived from
fo rmula (2. 5) for each specific quant ity v ~. For v 1 = A g 1 we have :

(5. 4) ~~ 

, ~~ 
(2 n+ 1) C ~ (m/r1) P, (coB ~1) j~)

~~~~~~~~~~~ - - — -~~~~~~~~~~-- 
.5
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and Ft, = A1, according to (2. 12). Fu rther examples are given below.

Prediction of Disturbing Potentials

In the spherical approximation the distu rbing potential (Ti) is related
to the gra vity anomaly (~ g±) by (Heiskanen and Moritz, ibid. , p. 89):

(5.5) ~.g = — .~L. —
~r1 r1

By replacing T1 of (5.5) by:

~ 42n+i,c,~* f re \n+1
(5.6) f±, = ra 

~‘ (
k
—)  P ,, (cos ~; 1 k )n — i  r 1

n = 2

the right hand s ide of (5. 5) becomes (5.4) (we exclude terms of degree less than 2).
This result implies that f1, according to(5.6) is the kernel function in (5.2”) for
v1 = T1.

Predic tion of Height Anomalies

From Bran’s theorem (Heiskanen and Mo ritz , ibid. , p. 293~ the ke rnel
function for the he ight anomaly (v 1=C 1) becomes :

~~~ 
J(2n+1) c’~ r,

(5.7) f1, = — ) 
— (—) P~ (cos ~~~~~~~~

n 1

where y is the theoretical gravity at the reference ellipsoid. In the special case
r 1 = r B and c~~= 2n+1 (u *=~~g*) (5. 7) inserted into (5.2 ) yV ds Stokes ’ fo rmula
(Heiskanen and Moritz, ibid., p. 94).

Prediction of Deflection S of the Ve rtical

The two com ponents of the defiections of the ve rtical (~ , 77) are rela ted
to the height anomaly C according to (Heiskanen and Morit z , ibid. , p. 312) :

~~~ c 
_ !

~~~ 
~~~~~

r 1 L i j  ‘ r1 L 1 ~~ J ~~
CO S(P i  ~A 1 cosco~ ~A 1

— 31—
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whe re q 1  and A 1 are the geodetic latitude and longitude. By using the follow ing
relations fro m Heiskanen and Moritz ( ibid. , p. 113) and Ab ramowitz and Stegu n
(1964, p. 334):

a4)
= - cos a 

~~~~~ 

= - sm a cos ~

and

~P~(cos~I) ) . d P~(cos~ )= - s i n ~ =
d cos~~

= 
(2n+1)sin~ 

~P,+1(c0~~) - P~~1~cor

where a is the azimuth from the fixed (computation) point to the moving po int , we
obtain the following kernel functions for ~ and 7 7 j :

1cos a 1,~ 1
(5.8) f.~ = 1 —— x

L S I f l  a ik ’~ V Sif l~~ ik

n(n+1) 
~~~~~~~~~ 

(-
~~

-) (P~+1(cos~~ — P~ 1(coS 4~ ~

where cos a 
~, 

refers to ~ and sin a 1, to ?7 ~. Fo rmula (5 . 8) inserted into (5. 2~
gives a generalization of Vening Me inesz ’ fo rmula (Heiskanen and Mo ritz , ibid. ,
p. 114).

Prediction of the Vertical Gradient of Gravity

The kernel function for v 1 = ~~ g1 /~r 1 is eas ily obtained from (5. 4) . The
result is:

(5.9) f 1k = - -~~- V / (2 n+ 1) c~ (n+  2) ( r e / r j )~~~P~ (COS ~I~t~)

For ce rta in sets of c~ the above kernel functions may be giv en in closed fo rms
.5 (Cf. below and Sjc berg, 1975, sectlonA .2).

Note. In the I mpulse methods (section 2. 4) F1, = f 
~
,.
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5.1 Minimum Norm Solutions

The prediction of a quantity v according to any of the methods of
Bjerhammar desc ribed in section 2 is given by formulae ( 5 .2 )  and (5. 3) for
any finite number of unknowns (N) . For example, in the minimum norm
solutions (section 2. 2) the prediction fo rmula becomes from (5.2) and (2 .9) :

v 1 = F l Q A T ( A Q A T )~~~~g

From this formula we obtain in the l imit  (N -°) (cf. 2. 14) :

( 5. 10) v 1 = k 1  C’’ ~.g

where the elements of the matrix C are given b~ formula (2 .13) :

C Ij  = V ~~ ( r 0
2/ r 1 r )

fl + 2  P~ ( cos ~

and

k1 = 1im F1QA
1

The following elements k ~ of k are obta i ned in acco rdance w ith formulae (2. 13) ,
(5.4) and (5.6)-(5.9). The coefficients c~ are given bv the selected minimu m
norm (see Table 2.1).

(5. 4’) k t ~~=~~~~c~ s~~
2

P, ( t )  ; for v 1  ~~~ t

= *FI~~~ C fl ~+2(5.6) k1, = — ) — S P,(t) ; for v 1 =V -~ n-i

1 ~~‘ c~~n(n+1) ~
-

(5.8) k1, = ) ~ P ,+1(t) — P,...1( t)
L.. f l-  1 L

n + 2  C COS a1,
x s 

~ } ; for v =
sin a 1, 77j
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(5.9) k 1, -! V c~ (n+ 2) s~~ P~(t) ; for v 1

where

s = ra2/r j r~ and t cos

The above predictions from formula (5. 10) are identical with the pred ictions u s i ~~~
collocation (Without noise) . E rroneous observations can be conside red by adc~ing
a noise covariance matrix to C of (5. 10) befo re inversion [see section 2, formula
(2. 16)1. The only type of observations cons ide red in Bjerhamma r ’s methods are
free—air gravity anomalies. Howeve r, as in collocation, hete rogeneous data ~:~~ht
be included in the predictions .

Finally, we mention tha t for many norms the above kernel functions can
be wri t ten in closed forms . As an example we give the ke rnel functions for

~ g’~~~min. (c~~= 2n+1):

(5.4~ k 1, s2 (1—S 2)/f~ ; for v 1

( 5 . 6 )  k 1, = r j s2 [ 2 / L + 1 - 3 L - s t ( 5 + 3~7i~~/ 2 ) ) ;  for v 1 = T 1

cos a 1,
(5.8) k1, = ~~~~~~ 

~~‘{sin a1,}{ ~~~ 
+ 5 -  3~~~1+~ +

÷ 3 ~ ’~~O / 2 ) ;  for

(5.9 ) k1, -= 
— 

~~
-‘

~~ 
f i  — 5s~+ 3 (1—s

2)2/L2};for v 1 = g1 /~ r 1
2r 1 L

whe re

S = rs2/r1 C~~ , t = C05 4.- j~

and

L ( 1 - 2 s t +  ~~2
)
~~~ , ~~= 1 - s t + L

F 

More examples with derivations are given in Sj~berg (ibid. , Appendices A . 2  and
A.3).
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5.2 Model Studies

In Sj~iberg (1975, section 19) some minimum norm solutions [for mula
(5. 10) ) for ~, ~ g and 0 (=J ’

~~~~ ) are computed for two simple earth models.
Some of these results are reported below. For details we refe r to Sj~berg (ibid.).
The following norms are used :

Method N orm c~*/(2n+1)

1 ~ g* 1
2 T* (n—1)2/re2

3 Lauritzenh) (n—1)/((2n+1)(fl—2))
4 ~~ 2) ( n—1 ) 2/(n (n+1))

1) empirical norm fro m Laur i tzen (1973 , section 10. 3)
2) 

(9~~ )
2 

(~~~*~~+ (~~ *)
2

5.2.1 Bjerhamma r’s Model

Bjerhamma r ’s model consists of a homogeneous sphere with a spherical
.5 and homogeneous mass disturbance M ( Figure 2), where M 8.37758 x 10’~kg and

a = 6362 km. The radius of the main sphere is 6370 km.

M 

r~~

’

Fjg~re2 .  Bjerhammar ’s Model. The dis tu rbing sphere M is located with its
center inside the main sphere.
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The “observed” Ag values (due to the disturbance M) were selected at
the su rface of the model. The first set of observations (15 observations) was
selected for ~ � 7’ 30”, the additional set of 35 observations was selected for
8’ ~ w ~ 25’ (all 35 points were located at the su rface of the ma in sphere). The
predictions of ~~, ~ g and 9 were carried out at the surface of the model (betw een
the observation points) for different depths to the Bjerhammar sphere (Table 5. 1).
The RMS errors at the optimal depths are summarized In Table 5.2. Methods
1 and 4 give good agreements with the theoretical values. The methods 2 and 3
are not suitable for th is local model. The importance of the choice of radius of
the Bjerhammar sphere is obvious fro m Table 5. 1.

Table 5.2

RMS Prediction E rro rs at the Optimal Depths .5
to the Bjerhammar Sphere

15 obse rvations 50 observations

Method1 Depth2 
~g 0” Depth2 

C ~Ag 9”
/k m/ /m/ /mgal / /km/ /m/ /mgil/

1 3 0.04 22.7 0.33 3 0.03 2.27 0.33

2 8—12 0.37 27.5 6. 20 - —— —-

3 - 11.9 34.2 6.25 - -- --

4 3 0.05 2.23 0.32 3 0.03 2.21 0.33

1 Norm used
2 DIfference of the radii of main sphere and Bjerhammar sphere
~ Not computed

.5 
No. of predicted points 24, RMS (ano maly - mean value) = 182 mgnl.
Refe rence: Sj oberg (1975, Table 19. 1)

5. 2.2 Molodenskil’s Model

The surface of Molod enskii’s model is a cone . Two spheres, whose centers
are located on the axis of the cone, are taken as the anomalous masses (see Figu re 3).
The attractions of the spheres m a and m , on the axis of the cone 4050 in above the
reference plane are 150 and 100 mgal, respectively (m~ 1.458 x 10~ kg,
m1 ~ 6.334 x 10

13 kg). As there Is a disturbing mass (m 1) above the refe rence plane,
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it is clear that this model is much rougher than Bjerhamma r’s model. The
computations revealed that for all methods (norms) the depth to the Bjerhammar
sphere should be selected as close to the reference plane as possible (10 meters
was used in the computations).

All observation and prediction points were selected on the surface of the
cone. A summary of the RMS prediction errors is given in Tables 5.3 and 5.4.
We notice that the predictions are essentially bette r for a more regular distribut ion
of the observations (Table 5.4). Again, methods 2 and 3 are less favorable t i-ian
1 and 4. We also notice that these RMS errors are of a magnitude larger than
those obtained for the smoother model of Bjerhammar.

A comparison between a minimum norm solution and the Dir~ ’ me ‘
~~ .d 

.5

for Molodenskil’s model is given in section 8.

.5 
FIgu re 3. Molodenskii’s Model

4.1km 
T

\4—
/ 2km

r12

I—. 24. 6 
1 

-
- . 4km

I-
!

2

- 

I
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Table 5 ,3

.5 Molodenskii’s Model . RMS Prediction Errors
at the Optimal Depths to the Bjerhammar Sphere

• Method’ Depth C Ag ~~~
“ 9”

/m/ /mgal/

1 10 0.67 25.0 7.58 13.78

2 200—3500 0.23 33.3 5.48 6.25

3 10 13. 5 45. 5 14. 24 28.25

4 10 0.63 25.0 7.58 13.76

1 Norm used
(10 m is the minimum depth used in the computations.) No. of
observations = 20 (irregular distribution), no. of predictions = 19
[RMS (anomaly - mean) = 81.7 mgal}. From Sjoberg (1975,
Table 19.2).

Table 5.4

Molodenskii’s Model. RMS Prediction Erro rs
at the Depth 10 m to the Bjerhammar Sphere

Method’ C Ag ~~~
“ 0”

/m/ /mgal/

1 0.09 15.4 2.45 2.70

3 5.2 18.9 3.11 5.80

4 0.06 15.4 2.45 2.70

1 Norm used
No. of observations = 24 (re gular distribution) ,
no. of predictions = 19 [RMS (anomaly - mean) = 81.7 mgal).
From Sjoberg (1975, Table 19. 3).
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6. Integral Formulas as Limiting Cases

In this section we are going to study the solutions by collocation and the
Dirac method for a continuous field of observations at the surface of the earth. .5
Two problems are discussed: the uniqueness of the solutions and the existence
of the solutions.

6. 1 The Uniqueness of the Solut ions

The non-singular Dirac method was presented in (2.25) for a finite set
of observations (we exclude te rms of degree less than 2):

(6.1) ~gp =

~~~~ 

u*k A (P,k) ; P = 1, 2, . . . ,

where

.5 

A (P,k) = ~ 
/(2 n+1)c~t (r8/ rp)~~ P~ (cos ~> P k)

Us ing the solutions for u~ of (6.1) the disturbing potential (T) may be estimated
by formulae (5.2) and (5.6) (for Ftk = f 1k) :

N
A

= r~ 
) U C~

1’ S (P ,k)
k 1

where

r /(2n+1)c’~ rB
S (P ,k) 

L i~ 
(.
~
•;) P~ (cos ~~Pk)

and the height anomaly is given by [ cf. (5 .7)3 :

(6.2) C~~= 4~,./ v

.5 Let N go to Infinity with a well-behaving distribution of the carrier points. Then
.5 we arrive at the following integral formulas from (6. 1) and (6.2) in the continuous

case:
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(6.1’) ~ g(P) = 
~~ 

J’J’ A (P,Q)u*(Q)dQ~

and

( 6 2 ’) C( P)~ ~~ $$ S ( P ,Q) u * ( Q ) d a Q

In the special case c ~* = 2n -i- 1 (u * = Ag *) (6. 1’) and (6.2 ’) become Poisson ’s and
the generalized Stokes’ formula, respectively.

We now study the solution by collocation in the same waV . From (1.2) we
get the following intermediate step (for D~ 0):

(6.3a) ~gp = C X  ,

or .5

(6.3b) 
k 1  

(P ,k) X k , P 1,2,...,N

where

(6.3c) c (P,k) =~~~~ c~ ( rB2 / rp r k)
n
~~ P~ (cos ~~~Pk )

and

X = vector of unknowns (X k)

The predic tion of C~ is given by:

(6.4) = ~~L 

k >  

Xk S (P,k)

where

S’(P,k) 
~~~~~~~~ 

P~ (CoS ~> P k )

.5 

Formula (6. 3b) and (6.4) may be written:

-41—
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P.

= 

~~ 55 c (P,Q) X (Q)d c~, P= 1,2. .. ,N 
-

.5

and

Cp = .~~~~
-
~
-_ $$s ’(P ,Q) x ( Q ) d a q

where

X(Q)=~~~Xk 6(Q-Qk )
c =1

6 = Dirac’s del ta function [see (2 .24a) f

= the foot point at the internal sphere of the normal ~-ough the
observation in P k

In the limit N -~~ (with the maximum distance among the observations approaching 0)
these equations become the following integral equations:

(6.3) ~g(P) = ~~L_ J’
~ 

C (P ,Q) X (Q) d a q

and

(6. 4’) C(P = 
~ $$ s (P ,Q) x (Q) d~~

Formulae (6.2) and (6.4) are estimates of 
~ (P). Furthermore, the estimates

seem to differ for various choices of c ,~* and e ,, of the kernel functions. However,
next we are going to show tha t these diffe rences are merely apparent whenever the
solutions exist.

First, we expand c (P, Q) of (6. 3c) into spherical harmonics [cf. formula
(A.1)):

c (P,Q) Y~1( P) Y~.(Q)

By inserting this expansion into (6.3’) we obtain:

Ag ( P) = ~~ 

~ 
,~ (!!)~ Y,,~, (P)

—42—
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whe re

4rr(2n+1) 55 (
~

)
~ 

Y . (Q) X (Q) dq~

In the same way (6 .4 )  and ~ g( P) may be developed into the following series:

= n
A 1 re
C P)= r, ’5’ V B~~ n - i  (.•

~~~~~) 
Y~.(P)

r 2  • — n

and

~ g(P)  = A~. (.!)~
2
Y~.(P)

where

A~~= J_.J’5 ~~g* (Q) \‘,. (Q) d Q~

From the above expansions we obtain for c~ >0:

B = A~.

and

A rp  1 (rB~~
’2
A~~Y~~~P) =

= J’J S (r~,~~~) ~g* (Q)  d o~

where

S ( r p ,~~~)~~~~~~~~~ (~~ )~~
>
P~(cos~~~ )

.5 
S (rp,~ pq) Is the generalized Stokes’ function. Thus we have shown that

each collocation solution for C (for c n > 0) in the continuous case equals Stokes ’.5 integral formula.
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The same result may be shown for Poisson’s and Vening Meinesz’
integrals. Moreover , the same proof holds for the non-singular Dirac method
in the continuous case [formula (6. 1’) and (6. 2’)]- . The uniqueness of all solutions

.5 may be rega rded as a consequence of Stokes’ theorem (Heiskanen and Morit~.,
1967, p. 17), which states tha t a function harmonic outside a closed su rface S
is uniquely determined by its values on S.

However , the conversion from one set of c~ (c ,~”) to another is , of co~ r ‘ ,

not valid unless the unknowns (X and u~) exist and the kernel functions are bouad~d.

.5 
This question is discussed in the next sect ion.

6.2 The Existence of the Solutions

In sections 3 - 4 we have studied the stability of th coeffic ient matrix for
diffe rent methods, which is of importance for the practical application with a finite
set of observations. Now we ask under which circumstances there exists a solution
in the continuous case ( infinite number of observations). As will be shown, the
existence of a solution to any of the integral equations is considerably dependent on
the smoothness of the obse rved field.

In Moritz (1975), a proof of the convergence of least squa res interpolation
is presented for an element T of a certain Hu bert space (with a given kernel
function) . However , Tscherning ( 1977a) showed that the disturbing potential of
the earth (T) is not an element of the Hu bert space, associated vath the empirical
covariance function. Subsequently, Moritz ’ proof is not applicable in this case.

In our study we sta rt with Poisson ’s integral equation for the exterior of
a circle of radius rB. All observations are assumed to be located on a circle of
radius r. Then we have f cf. formula (4. 4) )

(6.5) ~g (9~) = 5  ~~~~~~~~~~~~~~~~~~~

where

(6. 6) k (9 j ’9 k )  = 

~~~~~ s-e ’~~~~~~
2 = J—~~~~s~ e’ 0

~~~~

Now we assume that ~g may be expanded into a Fourier series and we try a
corresponding series for ~ g~ :

(6. 7a) ~ g (8~) =~~~~ a . e”6-~

.5 —-1-1 —
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and

(6.7b) ~g* 
~
9k~ 

=~~~b2 ~~~~

Furthermore, we assume that both the unknowns (~.g*) and the observations (ag)
are uniformly distribu ted with :

= 3 = 1, 2, . . . ,  m

where rn is the number of observations (Dirac method) . This impl ies that ~ g*
may be written:

= ~~g* (O ~) O ( 6- Ok)
k =

and

(6. 8) ~g ( O )  =~~~ k (9 J , 6k )  ~g*(&~) , j 1, 2, . . .

Let us now regard (6.8) as a linear filter with each “tone” bL e
t
~~ of ~ g as inpu t

and a2e
’20 of ~g as output. Then we obtain from (6.6) - (6.8):

aLe ” = 

k j  

~~~~~~ 
( ,—k ) / .  i L 2 ’ ~ k/rn

=

— 
b2 1L 2 ~~J / r n

— e m u2,~~(s)
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where (see Appendix, Corollary A.2):

u~,1(s) ~ = (s It~ rna + s~~~~~~a) / (1— S rn
)

a = [kij = integer part of ki
Hence

(6.9 ) b~ = 2~~aL / (m u2 1( s ) )

Moreove r we notice

u r n  ubrn(s) — 5 1fl m -.

so that for large m we have, approximately:

(6.9’) ~~~ 2rr a~/(m S ’~
1
)

We conclude tha t ~g* does not generally exist for a dense distribution of the observations ,
and the convergence for ~g* as m -. is very much dependent on the behavior of a~as £ -.

Let us assume that the solution for ~g* exists. The predictions of ~g (11, 0)are then given by:

= ~
!_
~~~~b2~~

.5 

=
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where

se = r e / H

and

V~~, r n ( S~~, & )  ~~~~~ ~~~~~~~ e t rni O

This sum is given in a closed form in the Appendix , Proposition A. 2. Inserting (6.9)
we finally obtain:

VL ,rn ( 5 R , O )  
t~~~6(6. 10) ~g ( R , 0 ) =  

~~

‘ 

a~ e
~~=_ =  

U~~,~~ (S)

.5 

Furthermore it follows from Coro llary A. ~ that:

I~I
~~~ 

-. S R ,

so that

lirn~~~g ( R , 8) = 5 ’ a~ ( L )  e~~~

Thus A~ is convergent in the limit for R � r .  (The conve rgence for K= r was proved
by Hormander. See Bjerhammar, 1974 .) Subsequently, we have shown that although
the predictions are un iformly convergent for R ‘ r, the intermediate solution ~ g* does
not generally exist in the continuous case (m— ’ ). This result is of great practical
importance.

Let us now substitute (6. 5) by the following general integral equation
Eel, fo rmula (2 . 5)1 :

(6.11) ~~~~ (O j )  = 5 k (9~, O k) u~ (a k) d 0k
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where
.5 

k (6~, 6 ¼) = /~~ s~~ e
1
~ ~~~

To ensu re tha t the kernel k is bonnded, we suppose that the magnitude of c ~ satisfies :

(6. 12) ~~~ ~~ < 1/n for n > M

whe re M is an integer. The solution of (6. 11) becomes:

u~ ( 6) =~~~~ b~ e
t lO

whe re [cf. (6.9) and (6.9 ))

b2 = 2~~a~/(m J~~ U~, 1 ( s ) )

or , app roximately for la rge n i :

(6.13) b~ ~— 2rt a~ /(rn ~~~ s~~
1)

From (6 . 12) and (6. 13) it is obvious that it is generally not poss ible to select a set
c ~ such tha t u * is convergent for arbitrary a~.

Next, we proceed to the global equivalenc e of the above derivations . We
assume that the gravity field of the earth can be expa nded into a series of spherical
harmonics [Y~1(P)J fo r each point (P) on the su rface of the earth (ef. section 6. 1):

n

~ g(P) =~~~~~~~A~. ( Z *~f+ Y,. (P)

where Y ,,,, (P) is defined in the Append ix , fo rmula A. 1.’ Furthermo re , we expand
u * into a corresponding series :

.5 

(6.14) u t (Q) =

~~~~ 

~~~~U flm Y~~~• (Q)
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where u ~ are unknown coefficients. By inserting these two series into (6. 1’), we .5
a rrive at the following identity for each spherical harmonic :

I *
/ c~1
— U~~~ A nrn2n+l

or

(6 .15) u~:= ;\ ,~rn ~/ 2 n+ 1

Here we have expanded P~ (cos ~p q) of the kernel function A (P , Q) ~iccordi ng to the
Addition theorem (A. 1):

Pn (CO S 
~ 

pq) = Y~~ (P) ~~~ (Q)

and we have also used the orthogonality property for the spherical harmonics.

The same technique may be used to solve for the intermediate solution X (Q)
in collocation . We insert the expans ion for ~ g (P) and :

(6. 16) X (Q) = X -
~~ 

Y nm (Q)

into (6. 3’ ), and we generalize the auto-covariance function b~’ substituting the
empirical set c~ of (1.5) by an arbitra ry set of positive definite pa rameters c ~ .
The result is:

~~ C ,~ ~~~~ rr  (rs \’~
2

.5 2.~ L 2n-4- 1 Y nrn (P) X ,‘~~‘ JJ ) Y ,1(Q) Y~’.’(Q) d ~q =
n,. n~~U

(6. 17)

/ ~~~~~= ~ A~1 ( )  V ,• (P)
rp

n,.
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In this case we can not simply apply the orthogonality property of the sphe rical
ha rmonics to identify the unknowns, because r4 is a variable. However, if we
limit ou rselves to the special case rq = r = cons tant (all observations on a
sphere) we obtain :

r ~~~~~~

(
~

) ~~~~ X ,,. A~,
r 2n÷1

or

2 + 1  r(6.18) X n r n  = 
:~~

— A nrn (
~

•;)
In summary, the solutions for u * and X are :

(6.19) u * (Q) = ~ ~/
2fl+ 1 A n rn ~~ (Q)

n. ~

.5 and

(6.20) X (Q) 
~~~5 ~~~~~~~ ~~~ ( )

n+2

If we now cons ider tha t the choice of c ~* is restricted by the condition of bounded
ke rnel (covarianee) functions , the convergence of (6. 19) and (6 . 20) is essentially
dependent on the smoothness of A n: for higher degrees.

Let us for the moment assume that (6. 19) and (6. 20) converge . By
inserting these solutions into the integrals (6. 1’) and (6.3 ’ 

~, we obtain in both cases :

(6.21) A
~~

(P) =
n~
i
2 .~~.n

A flrn ~~~~ (P)

.5 This series is Identical with the exterior gravity anomaly of the earth. Thus the
prediction s converge to the tru e values, whenever the unknowns u * and X exist in
the continu ous case (cf. section 6. 1).

Accord ing to the Hilbert-Schmidt theorem (Chambers , 1976 , p. 50), the
.5 

.5 series solution (6.21) for ~~ (P) of the left member of the integral equation (6. 3
is valid if and only if:

.5

’ 
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1) c(P,Q)=~~ c ,~ (ra/r)~~~~
) Pfl (COS~~ PQ)~~~~

and

2) IIx~
I2 = ~4!~:;. 55 X 2

( Q ) d a q <~~

where r is the minimu m radius to any point at the surface of the earth. Us ing
(6.20), the condition 2) may be written:

2’) 1 X 112 = 
(2n+i)a~ (r)

2(
~~2)]

2 
<

where we have used the notation:

2

~~~ 

~~~~~~~~ 

(.~!5~ = c~~, (.E.!)

a~~ is the anomaly degree varianc e at the sphe re of radius r (Cf. formula (1. 5)). From
1) and 2’) we a rrive at the follow ing inequality for the magnitude of c ,~* :

2(f l +2)

(6. 22) n ’ O~ ~ c ,~” (
._!

) <

In the same way we obtain the following conditions from the integral equation (6. 1”) wi th
the solution (6. 19):

1) A (P ,Q) =~~~~v~~~+ 1)c ,* (r s/ r)~~
2 P~ (cos ~~ )

and

2) ~u *j ~ =
~~~~ (2 n+1) -

~~~~~~ ~~~~~~~~ ~

and the corresponding magnitude bounds for c ,~ are given by :

(6. 23) 11
2 ~~ 2 c ,

~
‘ (1!. ) < n 3
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The inequalities (6. 22) and (6.23) should be regarded as necessary bounds for c ~in a convergent solution of collocation and the Dirac method, respectively . Wc notice
that both (6.22) and (6. 23) are satisfied for:

(6.23’) a~ <

However for the gravity field of the earth , we have accord ing to Kaula ’s rul~ of thu 1nb
fo r the variation of the potential coefficient s , that a~ is on the orde r of &~ “ ~~. Thus .5

we conclude that the solutions for u ” and X are not conve rgent in the continuous cas’~- .
The same negative result is obtained if we replac e the observations ~g of (6. 1 and
( 6.3) by the distu rbing potential. In this case , we a rrive at the same ir’~qualit ies
(6.22) and (6. 23) . The degree variances of T (a ,~

2 (T) ) are of m- , ..eitude rj 3 aceord i~~to Kaula ’s rule, and it is clear tha t (6.23’) is not satisfied.

In all the methods of Bjerhamma r, the idea is to determine a fictitious field
u ’~ (or ~~*) on the internal sphe re, and then to use u ” (~ g*) in the classical integral
equations for estimating geophysical quantities such as Ag, T, ~~ , and 

~ . In collocation,
we are not restricted to the determination of the corresponding inte rmediate solution.5 X as was suggested previously . For example , the prediction of ~ gp may be expressed
direc tly as a linear combination of the observations (discrete case) :

(6.24) 4~p 

~~~ 

h p j  ~~~

where h~ 1 are the weights, which are given by the following discrete Wiener-Hop!
equa tions :

(6.25) c P k ~~~~~~~h p I C lk  ; k 1 , 2, ... , m

where c is the covariance function of Ag. In the continuous case (6. 24) and (6.25)
.5 become:

(6.24 ’) AAg ( P) = 
~~

— 55 h (P ,Q) ~.g (Q) d 0~
and

(6.25 ) c (P ,Q) = 

~~

— 55 h (P,Q’) c (Q’,Q) d aq’
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If P is a point at the surface of the earth , (6. 25’) has the solution:

h ( P ,Q) = O ( P - Q )

where 8 is Dirac ’s delta function defined in (2. 24a) . If P is a point outs ide the
surface of the earth , we may assume that the covariance function c is spatially
homogeneous and isotropic:

C (P ,Q) 
n=2 

C~~ (r e/rp r Q) Pn (cos 
~~ Q)

In order to solve for h we try the following expansion:

h (P ,Q) = ~~~~~ P~ (cos ~~q)

.5 where h~ are unknown coefficients to be determined. Let us restrict ourselves to
the spherical approximation of the ea rth, i.e. r q = rQ’= r = constant. Then we
obtain from ( 6 . 2 5 ) :

y,+ 2h n = (2n+1) (r/r p)

and the solution for h becomes a modified Poisson ’s kernel function:

h (P ,Q) = ~~ (2n+1) (r/rp )~~~P~ (cos ~~ )

2 2 2 2 3r ( r p  — r ) / r \ (r \= — , — i — j — 3 ~~— ; cos~ ) pq
.5 r~ (r P2 + r — 2 r r ,cos~,,Q )~’2 \ r p / ~ r,i

.5 and (6. 24’) becomes Poisson’s Integral (without the terms of degrees less than 2).
.5 Thus we have found that by carrying out the collocation solution by solving the

Welner-Hopf Integral equation, the correct gravity anomaly is recovered on and
outside the surface of a spherical earth.
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In the same way we can solve for the disturbing potential in the exterior
of a sphere. Let us use the estimator:

(6.26a) T (P) = -~ — $5 h (P ,Q) ~ g(Q) d 7 q

where h ( P ,Q) is givenby :

(6.26b) k (P,Q) = ~L 5$ h(P,Q’) C (Q,Q) d a n’ .5

and

k (P,Q) = ~~~~~~~ (re~/rp r)
’4’2 P. 1cos ~~~

.5 

c (P ,Q) = c , ( re/r) 2~~~2) P~ (cos ~~P Q )

By trying an expans ion for h in (6. 26b) (ef. the p revious example), the coeffic ients
h , are eas ily Identified and the solution for h becomes:

h (P,Q) = r S ( r ~ ,~~p~)

where
~0

‘.~~~~1

S (r~ ,~~pg) = 
2:+i (.L.) ~~, (CO S ~~PQ )

Thus the solution for T/)’ from (6,26a) with r p = r is Stokes’ formula (cf. section 6.1).

.5 

6.3 The Effect of Smoothing (Noise)

The solutions for u ’ and X in the methods of Bjerh ammar and collocation
may be smootb~ - F by adding a noise covarlance function d (j, k) to the auto-covarianc e
fu nction c (j, k1 I~~e fo rmu la (1. 2) and (2. 16)1. Consider the example of the previous
section with a continuous field of observed Ag on a sphere of radius r. Let us replace
the covarlance function of (6.3 ) by:

I _____________
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(6.27) ~ (P,Q)= c(P,Q)+d(P,Q)

where

d (P ,Q) = d ô (~L)~q) , d > 0

6 (~~)p~~) = Dirac ’s delta function, defined in (2 .24a) . This noise covariance
function corresponds to pure white noise. By inserting (6 . 27) into (6. 3 ‘), we obta in
in accordance w ith (6. 17) and (6. 18) (fo r rp = rq = r ) :  .5

/ n -s- 2

(6.28) X ,~ 
= 

A~1 r8i r)

d+ (re/r) 2
~~~~ c ~/(2n+1)

For large degrees (n) the coefficients X~~ can be approximated by : .5

1 
~ 

(r 8’\n+2
X n~~

—
~~~~- I  n:~~~~~_)

Subsequently

X (Q) X ,,~ ~~ (Q)

is convergent whenever the spherical harmonic expansion of ~ g has the radius of
.5 

convergence r.

The pred iction of new anomalies from the intermedia te solution x is given
by (6.16) and (6. 3 ’). The result is:

4(P) 

~ 
X~~~ (rs2/rr p)~~

2 
~~~~ Y,. (P)

By inserting (6. 28) we arrive at the following predictor and prediction error:

2 (f l + 2 )  +2
(6.29) Ag(P)=~~ (2n+1)d+c n(re/r)2~~~) 

A~~(~~) Y~1 (P) H

.5 
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and

(6.30) 4(P) — 4g (P) = - ¶ — 
+3 A~~ (~!) Y~ (P)

~~~~~ 
d+(r8/r)~~ ~c~/(2n+1)

Subsequently, by selecting a suffic iently small d > 0 , the prediction erro r becomes
arbitrarily small . However , in practice the constant d has to exceed a certa in
minimum value due to the requirement of X to be within the range of the computer.

In a similar way we may approxima te the solution for the Dirac method .

The smoothing is first of all justified when the observations ar~ err acous.
[Cf. formula (1. 2) and (1.3).] These predictions are statisticall iased , vhich we
conclude from the following application of (1.3). Let:

Agp = C p ( C + D ) ’~~~

be an estimator of the anoma ly Ag, , which is included in the vector of observations
.5 (~~g) .  Furthe rmore , A’~ consists ~f a signal ~ g and its error ~~:

g =  ~ g +  E

where ~.g is the true anomaly and:

.5 
E [ c } = 0  and E { E e ~~= l )

E { ) = the probabilistic expectation

Now it follows immediately that:

E [4p~~ = cp (C+ D) ’ E ~~~~~ c p ( C + D ) ’~~g

Hence

E f4p1 �
‘ cp  ~ .g =

and we have proved that is biased.
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In the continuou s case we may prove the bias in the following way. Let
the observed anomaly field (ag) consist of the signal Ag and the noise E :

C

where

r rB
~g ( P ) = )  A~~~(_ )  Y nT ( P)n.m

n + 2
E (P) ) ~~r.m Ynm ( P)

E [E~~ = E  [~- , , ) = o

The estimator of ~ g(P) when including the noise in the observations is in accorda nce
with (6. 29):

4 (P) = 
C. (re/r) ~~~~~ 

~ 2 (A + E~~) 
(~~~~)~~~

2

~~n m (P)
,~~ (2f l+ 1)d+c ~ (r 9/ r)~~ 

) rp

and the bias hcccn~

A

F {~ g(P ) ) - ~g(P )  = -
~~~~ ~ 2 ~~~ (—

~~ 

Y nm (P)
d+ (r e/ r ) ~~ ~c~ /(2 n÷ 1) rp

The bias is due to the fac t that ~g itself is not a random stochastic process , only its
errors, E. (The expectation should not be inte rchanged with the global average.) A
way to diminish the bias is to subtract a low degree spherical harmonic refe rence
expansion from the observations prior to the prediction. Even thou gh we cannot
correct for all the bias , the resulting residuals are , hopefully, more random than
the original observations . The general prediction fo rmula (1.2) should therefo re be
modified in the following way [cf. SJoberg, 1975, formula (16. 1) and Koch, 1977 ,
fo rmula (18)) :

(6.31) v 1 = +
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where

C 1, A~ = low degree spherical harmonic expansions for v and ~.g.

This is the well-known collocation with the inclusion of systema t ic terms represented
by C and Ag. We conclude that this formula should be used not only in local stt~dies ,
but also in global applications of collocation to reduce the bias in the model.

6. 1 The Limiting Case of a Least Squares Solution .5

Finally , we are going to study the convergence of the least squares solution
of Poisson ’s equation for the circle. We assume that we are using the T’)i rac m ethod
with m >N.  The residuals may be written:

N

E~~~ ~~~~~~~~~~~~~~~~~~~~ , j =  1, 2 , . . . ,  m

The minimum of the square sum of the residuals is obtained for the normal equations:

k (O~ , O~) ~gj  = k (8
~
,9~

) k (O~, O~) ~~~
j 1

where

q = 1 , 2, . . . , N

Inserting

~~~~ ( Oj ) 

~~~~~- 

~~~~ , = 2~~j /m 2~~r j / N

.5 and

~~~ (6 )~) =~~~~ b1 e
1L8

~ , = 2 ~k /N

whe re r is an integer (m is a whole multiple of N) into the norma l equations it can
be shown that:

b2 a~ S 
I~ + N ,I

1 N ~ 
I Q + N p +I ~I + I~~+ N pl
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where all summation intervals are [- -n , + co ]. Specially, for n-i ~~ = we arrive at: .5

(6.27) b -
~~ a

‘~~‘ 2 I~.~~~pI
N S

where the sums are given in a closed form in the Appendix , (‘orolla ry A . 2. It
follows fro m ( 6. 32) that Ag* will generally not exist  when N approa , hes infinity ,
because for large N we have approximately:

s ‘ ‘ IN .5

The prediction of an arbitra ry point Ag (9, fl~ fro m ~g * and (6.32) g iv e s :
s:—’ ,~ ~~~~~~

‘
S

A

~ g (0 , R) = :i~ e’ V~~,\  (6 , 11) 

~~~~~~~~~

where

vL. N ( O , R) = ~‘ e’
~ 

~, S~ = r B “R

Spec ially for 0= 0, = 2rr j /N and R r we obtain:

~

~
g ( 6 . , r) = a~ c ’~ ‘ 

q2 I~ # N pI 
—

.5 and finally

lim~~~~(9~, r ) = 5~
’ aL e

Hence, the least square s prediction converges to the true value when N approaches
inf inity .

.5 
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7. On the Choic e of Radius

In the studies of the Bjerhammar probleni little att ention has been paid
to the choice of rad ius of the Bjerhammar sphere ( rB ) .  Howeve r , in Sjohe~ g ( 19Th)
the importance of this cho ice is demonstrated for different cova r iance func’ uons .
In this sec t ion we are going to use the following one-dimensional prediction est imate
on a circle as a basis (cf. the previou s section) :

A ç’ vL, : I L O
(7.1) ~.g(r , 0) = 1 aL — e

L _ co UL , m

.5 where

.5 ~ ‘~‘ :j
VL,: VL, I (S , O ) = 5 e

u L , m  vL,~~(S , O)

and m is the number of observations . The correspond ing prediction errors are:

(7.2 a) ( ( 0) = ~ g ( r , 0) -

wher-~

~(7.2b) 
~L ( 8) aL L~

- -- — i~ e1 -

We define the mean prediction erro r in the follow ing way:

.5 

( 7 .3 )  ~~~= ~~~ S
E (e

~~
d o

First we prove the following proposition .
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Proposition 7. 1: If a ~ = 0 then

0 ~ - 1 a.1

and

i-~~0 , s -• 1

S 0

where m is the number of observations.

Proof: Using

~~ 5~~~g~ e~ d O  = a 0 =

it follow s from (V .1 ) :

~~ 5~~~g ( 0 ) d 9 ~~~~ ~ L ~~ ~~~~~~ 
S e

I(

~~~~~
.1) 6  d O  =

2~ -
~~ uL, I -~~ 2

0

~-, a~ i_ S m 
~~) = —

~ 
) a~

~~~~~~ 1+s

Here we have used Corollary A .2 with L = j m :

1+s m
Uj1,~~~~

From this expression, the p roposition readily follows.

Althou gh s- I gives tl-~o mean prediction error 0 and has also proved to
give the most stable solutions (section 3), the “best” choice of radius r , must be
determined in some mean square sense. Let us the refo re study the prediction of
the signal:
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(7.4) ~ g2 (6) = b cos (~ 0)  + c s i n ( L 6 )

at the circle of radius r . We define the rePaive variance in the follow ing \va~ :

(7.5) RL S E
2 e) d e 1 r~~~~ d O

where

((8 ) = 
~~~~~

(0)  - ~g~ (0) (pred iction error)

It is shown in the Appendix , Proposition A . 4 , that (7 .5)  may t - \ ‘ ~tte . for £ > 0):

.5 sL if L ~ ~~~~ p , p = 1, 2 , 3,
(7.6) RL { 

______ _____
1+ 2 8  

+ 
1 

~~ if 2 =.!iL p
2(1÷13 ) 2(1+$) 2

where

(7. 6 )  S = 1 + ~~~~~~~~ 

2~~— 4 ~ 
— 

1 — S T 
2s 2

L 1+s T 
( l +S

m_21
)
3 1 +s~~

3
~

n =  £ —  — mm-

~~ (C/b)~

.5 

F rom (7 .6)  and ( 7 . 6 )  we draw the follow ing conc lusions:

a) l i rn R~- = 0 , m ’
b) lim S~ 1 , s — 1
c) if L < rn~ 2 then lin i 11L = 0 , 5 0
d) if m/2 then S~> 1/2 and u rn S~= 1/2, s 0
e) i f ~ > m/2 then S~> 1/2
f) if ~ = mp then ~~<2 and u r n  S~= 2 , s 0
g) if L = m ( p + 1/2) then sL .5 3/2 and Iim S1, = 3 / 2 , s 0
h) if L > m/2 and ~ ~ mp/2 then lirn = , s 0
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100 -
/

/
/ 15 0 ( m )

/
/ ~~~~~~ 2~~30
/
I -~~o

— 5 0 - i

‘. 
,

2 : 5\.
~~~~~>~c

~~~~~~~. . 2-20.
~~ .— ..5 

~~~~ - 
. . . . . _ J  .

~~~~~~
. .-  I

I 2 3
h/a

Fi gu re 1. The relative variance ~ In the Di m e method for the c i rc le, us ing
Poisson ’s kernel , is given for s ignals of various frequencies ~1) as
a function of h/a , where h= distance from the Bjerhammar circle  to
the c irc le  of observations and a= spacing of the data ~2 ‘~ r/rn ) . mr=50 .

- 0.10

~~~~~~~~~~~~~~~~~~~~~< 100 - 
~~~~~ - a050

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~ re 5. The optimum ratio h “a and the corresponding relative varianc e
(R 1 ) given as functions of 1/rn , where I is the frequence of the
signa l and m is the number of observations ( 1 - 0. 5 m) .
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J
These statements are illustrated in Figures 4—5. It is obviou s that f~ r .5

low—frequency observations (L ~ m/2), the radius r B should be chosen as sma i as
possible in accorda nce with the numerical difficulties discussed in sections ;~~- -1 .
(See also section 8.) For highe r frequencies (L  > m/2), the relative variao e 

.5

is at least 50% (see also Bjerhammar, 1977a) . Accord ingly, signals of fre quency
higher than m/2 can not be predicted in a satisfactory way.

In a real prediction case we do not have the above ideal situation ~ ~th a
uniform distribution of data of one single frequency, and the most favoraul . ’ (1i$U ~flCe
r 8 is a function of the unknown coefficients (as) and of the mean spacing of t h e  dat  .
In most cases empirically derived covariance fu nctions are assoc iated with a s~ecif i~
rad ius of the Bjerhammar sphere. Several tests in Sj~ berg (1975) revealed Lha t th~
solutions by collocation are rather unsensitive to the choice of kernel functi ri~ , if
the optimal depth to the sphe r is chosen for each of them. H G- . er , tim ~no~ 
rad ius (changing for each distribution of the observations) is ‘~ip-~rthnt  for a good
result. In conclusion, a study of the relation between the optimum rad ius rB and ttie
spac ing of the observations is recommended for each spec ific kernel function. For
instance, in the numerical example of the next section , the optimum depth to the
sphere in the Dirac method is approximately hal f the distance b e t w an  ncighhor 1ng
observa t ions.

8. Computations

The iterative method described in section 4 wi l l  be used to demonstrate the
ra te of convergence of the solutions for ~~~ and X in the I) irac method and collocation ,
respectively [see formulae (3. 1), (3. 2) and (4 .  2 ) J .  The stabi l i ty  of each method is
reflected by the number of necessary iterations for the solution of the vecto r ~~~ or X.

Fi rst , the case with the degree variances equal to 2n + I wi l l  be considered.
The observa tions consist of 87 free air  gravity anomalies regularl y distributed wP.h a .5

spacing of app roximate ly 0~ 5 (Table 8. 1). The 50 prediction points and anomalies
are given in Table 8.2. The mean value (~~~) of these 50 anomalies is -2.8 mgal and
the R MS value of ~ g — ~~ is ± 13. 4 mgal. In the computations we assume that the

4 mean sea level radius is 6370 km. The prediction results are given in Table 8.3 and
.5 

Figure 6. From the table we notice that the number of necessary ite rations inc rea ses
with the depth to the Bj erhammar sphere and that this increase is more pronounced for
collocation than for the I) irac method . The solution by the Dira c method for one specific
depth is identical with the collocation solution for half that depth. This result implies
that the latter method is twice as sensitive to changes of the depth as the former.

For comparison we study also the predictions us ing collocation with  the
empirical cova rianc e function implied by subroutine COVA (Tscherning and Rapp, 19741.
The computations are per formed for d iffe rent lower bounds (N ~~ of the covariance
fu nction. In each case the RMS prediction error 10. 1 mgal was obtained . The number
of necessa ry iterations are given in Table 8.4.

—64—

.5 .5 — .5

_ _ _ _



.5 - --- - --

o
—~~~~~~~~~~~~~~~~~~~~~~~~~~~~e—— —— ~~~,— c~ — — — — —

I I I I I I I I I I I

— — ~~ r- a”c~~i~ — r-i  -~~~~~~~~~~~~~~~~~~N — ~~~~~~~~~ N~~~~~~ 4 ’ F -—

Li 0 .5

.0

Q~

~~~~~~~~ F -N~~~~~~~~ ’ t F -~~~~~~ C’~ N~~~~~~~~~~~~~~O~~~N L~~~~QC
~ a’ — ~~ v~ ‘~~‘ ii~ a’ N a’ It) F- c~ C’) ~ ~ C’) k~ — ~~‘ 0’ ~~ a’ ‘~~ — F- ~~ a’ ‘0

-
~~ c~

Q .9 ~~~~~~~a ’ — —~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — c’ i—-~~ 
.5

c C f ~

N ‘0c’) ‘00’ 0’ 4’ F- N N ‘0 ‘0’ -
~~ C’)’0 ‘0 N N 0’ a’ a’ a’ N a’ N a’ 4’ 0’ (‘1 —

0’ ‘0 ~ON  ‘0 a’ a’ C’) a’ N I’) 4’ N F- a’ F’- ‘0 N C’) 0’ 0’ 0’ 0’ C’) a’ N -3’ 4’ 3’ N 4’
Li *‘0 N — 0 ’ 4 ’ N ’ -~~— ’a’’P~~ F-~~~~~I C ’)N I ’) 0’ .~~a ’N a ’C a’4 ’2 ’i’C’0

4’ N 0’ F- ‘0 F) N 0’ ‘0 N a’ ~ ~~‘ — Cf~ C’) 01 N N OR o’ a’ 0’ ‘~~ ‘0’Q * ~~ .5

~ 
.. .... .~ ..~ ..

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 it) * Ci N C’) *4 It) It) C’) F— N N F— C’) 4’ Ci — N — Ci — 0 ’  4 4  N F’- ~~ N ’0
*4’ 00’ 0

~

F) 4’ - ‘0~~ 4 — N N ~~ C~ ~ N — ~~ 4’ I~ Ci F- — — 0 ’  4’ F- -‘0 Ci it) 0’ C’~ Ci 4*0’  4 ’—  ‘0 ~~ C’ . 4’ 4 ’—  - it, — — a’ — N
~ - — N N I C ’ i - — —  I N — I N  N N I  —~~~~ — I = I  — I I  —

I I I  l i i i  I I  I I  I I I  I I I I I  I I  I I

r~ 0 ’ C i 4 0 ” 0 F - — a ’ e 0 ’a ’— ’ 0 F ) 4 F ) ’ 0 — 4 N — F - F - N ’ 0 ’ 0 N * — * * N N~o N a ’ a ’— N — — N I ’ ) 0 ’ — N F - ’ 0 a ” 0
~ N N 4 ’N 0 ’~~

N 0 ’ 4 F - F - N ’ 0 0 ’N a ’ N N a ’N F -~~ =C ’1N* *N 0 ” 0 ’0 0 ” 0 ’0_ 0 ’N C ’J 0 ’0 ’4 ’~~~ ’0 ’0 ” 0  ~— ‘ 0 — — N— 1-’ ~~ ‘0 CM N F’. N F- It) F— ‘0 ‘0 CM 4 II) F -a ’  4 C M  0144 CM 0’ — — N 0’ N 0’ It) I’) It, ‘0 ’04  N N * C’) 4 Ci 0 1 4 — 0’  F- 4 0’ 0’ 0’ It) N 0’ F—

~~p ‘00’-”0N N ** — N C M a ’ N0 ’ *a’ ’0NN F - a ’ C M 0 ’~~— ’0 N *F - a ’
N — CM — 4  0’ - It) 0” 4 — ‘4 ’ 0’ ‘00’ 0’ 4’ 0’ ‘00’ 0”0 a’ ‘00’ 0’ It) 0” ‘00’ 4 F) 0’ k~ 0’ 0’ VI 4’ It) Ci 4’ 0” 0’ ‘00’ It) a’ It) It) 0”0 0’ *0’ It) 0’

— F.l 0’ ‘0 CM ‘P a’ C’? F- C’) C’l a’ ‘00’ 4 P. — N ’0 —  C-i — ‘00’ 0’ — ‘0CM 0’ CM CM 4 N ’0  0’ 0’ 0’ — it) CM CI ‘P a’0’ — N CM -. N N N F— F- ‘0 — 4
ø N 0 ’0 ’C ’I ’0 C M C ’ i N 4 F - ’0  ‘0 0” 0NN 4’C i t .*0 ’0 ’  — C M 0 ’ N ’ 0 ’ 0  — N C I F ) N F- NF - N a’ C M C M F - F - 0’ , t )N I o N V I F- C M *— — F - a ’ I t ,0’

~~
~~

4 4 4 4 4 4 4 4’  4 4 4’  4 *4 4 4’  4 4 4 4*4 *4 *4 4’  4 4*4 4’  4 4 4 44 ’  *4’ *4 4’  4 4*4 4*4 ’  F’) It) It) I’) It) 1’) I’)

‘O’0N — N 0 ” 0 0 ’0 ’— C ’ 1 N’0 C M* ’0 N v ) 0’ ’0 4 ’ a ’ ’0p - C M 0’F -N C M *I I Ia’ 4*0’  — 0 ’F - ’ 0 — ’F - 0 ’N 0 ’ 0 ’F - 0 ” 0 0 ’4 ” 0 F —v) .’)c’)0 F - ’ 0 ’ 0 0 ’ 0 ’ F ) F ) ’ 0 N ’ 0 V I 4 ’ 4 ’ * ’ 0 4 ’ 0 ’ F - — 0 ’ 0 ’ 0 l 0 ’ - ’ — 0 ” 0 N — I t ) ’ 0 0 ’ V I — 0 ’ - ’ 0 ’ F ) ’ 0 ’ 0 N — ’ F - F - 0 ’ 0 ’ N — ’*’0 C ’I *.0 *—r ‘0’0’0  ‘0I- ’0’0’0 l I J ~t- t- t-I t)~~ ‘ ‘ 0 F - — F -t -N01*0 ’NIO4 ’L ’)0’ N C M C M N ’ 0 ’ 0 N C M N ’ 0 0 ’ 0 ’ 0 ’ 0 ’N L ’ )’0 I-~ c’) CM c ’)N ’0 It) I t )’ 0 0’— O  C M - — N 0’0 ’  0 ’ 0 ’ 0 ’ 0 ’ 0 ’ 0 ’ 0 ’ e 4— * 0 ’ 0 ’c - 0 ’— C ’ l 4 ’  — 

—65—

L - ~~~~~~~~ ~~ -~~~~~~~~
-- - —-

~~~~~~~~~~~
- .5



Table 8.2

Prediction points . 50 free a i r  gravi ty anomaly
stations in Manitoba , Cana da .

NO LONG I TUDE LATITUDE ALTITUDE ANOMALY
DEC DEC METER P~GAL

16009 50.59499 91.14833 386.181 “ 71,
16011 50.74666 90.96165 379.476
10499 50.79678 92.36719 425 .501 13.82
16042 50.95000 91.75833 402.031 -9. ~~16012 50.88333 91 .01666 378.257 1 .71
104)52 50.59193 92.61716 428.854 12.66
10047 50.22284 92.84720 358.445 -3.57
10038 50.21497 92.37631 357.835 -3.37
15372 50.49666 9 1.87 166 357.225 12.68

273 50.40*333 91.50833 370.027 3.99
15370 50.75499 91.88333 391.973 7.53
16047 50.68333 91.41998 382.219 13.54
10496 50.80524 92.14000 396.545 -2.18
1008* 50.21280 93.23965 364.845 7.53
625 50.30666 93. 17999 361.493 4.41

16002 51.12833 90.86833 380.390 -21.34
16050 50.29498 91.38998 373.685 -14.68
1533 1 50.74500 ~0.75665 390.449 7.83
15334 50.42332 90.71666 391.058 2.09
16056 50.18333 90.68832 404.774 -15 .16
15384 50.12999 90.23999 417.576 -3.35
9164 48.91-~99 90.6000 1 457.809 — 11 .23
13576 49.02196 91.96181 425.501 —21.95
15715 49.84846 90.40294 442.265 -2.80
15723 49.74696 90.75410 435.559 -5.18
15675 49.86766 92.09277 382.524 -23,51
10019 49.84630 92.39220 366.674 -18.90
15378 49 .92999 91.38333 388.925 —29 .92
10203 49.76701 94.87744 359.969 2.11
1l ~.55 49.62477 94.02734 373.990 —10 .26
10222 49.59979 94.35619 323.088 5.44
57 10 49.43166 96.27499 357.225 5.27
5346 49.72333 95.24666 338.328 16.62
10 198 49.62842 95 .49942 318.211 -1.36
553 1 49.71666 94.93666 359.664 10.92
5076 49.71500 94.80666 345.643 14.12

10078 49.90d07 93. 14622 372.770 -8.51
10104 49.68t,29 93.87337 379 . 171 -18.87
10098 49.30528 93.5 1170 338.023 6.60
5084 49.81332 92.97501 355 .092 —1 0.10
10014 49.62167 92.44067 385.572 18.04
12002 49.49670 92.69481 403.555 11.76
10007 49.22151 92.46306 405.384 --23.49
213 49. 14 166 92.70332 388.620 -22.67

15725 49 .70801 91.09705 435.559 -8.48
15736 49.66466 91.81667 4*9.405 -24.77
15~’38 49.24759 91.46384 445.617 -13.99
10249 48.66917 93.27843 837.718 -6.09
13n52 48.56082 90.73390 441.75 1 -23.06
15748 48.83151 90.96706 445.922 —18.72
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Table 8. 3

Comparison Betw een the Predictions of 50 Free Ai r
Gra v ity Anomalies From 87 Observed Anomalies

Using the Dirac Method and Collocation *

Dira c Method Collocation

ra depth No. of RMS error No. of RMS error
(km) (km) iterations ~mgal] ite rations I mgalI

6315 55 30 10.7 30 11. 8
6320 50 25 10.6 11.7
6325 45 16 10.5 ~l0 11. 5
6330 40 10 10.4 30 11. 3
6335 35 7 10.2 30 11. 1
6340 30 5 10.2 30 10.9
6345 25 4 10.2 25 10.6
6350 20 4 10.4 11 10. 4
6355 15 3 11.0 5 10.2
6360 10 2 12.0 4 10. 4
6365 5 2 13.2 2 11.9
6370 0 1 13,5 1 13.5

~ The iterat ions of ~.g* and X are interrupted whenever the RMS residuals
are less than 0.25 mgal ., , the maximum-residuals are less than 0.5 mgal .
or the number of iterations exceed 30. Degree variances = 2n+1.

Table 8.4

Number of Necessary Iterations of the Vecto r C 1 
~ g

to Sa tisfy Eithe r of the Conditions RMS Res idual < 0 . 2 5  mgal
or Imax . Residual j < 0.5 mgal .*

N !jfl 3 5 3 13 20
No. of iterations 18 16 14 13 10

* Subroutine COVA Is used for d ifferent minimum degrees
(N~1~)

-68—

-.5



~~~~~~~~~~~~ -~~~.
_ -- - . 5—

The empicical covariance function in colloca t ion gives a slightly better
prediction result than the Dirac method for its optimum radius of r8. This gain
is obtained at the cost of at least twice as many iterations. For a denser spacing

.5 

of the da ta , the numbe r of necessary ite rations will  inc rease and the d iffe rence
.5 

between the two methods becomes more pronounced. With this reasoning, the
non—iterative solution mas- fail , when us ing collocation (due to numerical
s ingularity), while a solu t ion by the Dir a . - method may still be useful. For example ,
the prediction result repo rted in Table ~~. 5 shows small differences between collocation
and the IJirac method (93 well distribu ted observations) . However , when a few more
observation points were included (99 points) between the prev i ou s ones (with min imum
spacing 675 mete rs~, the RMS pred ic t ion error of ~ inc reased to ll~’4 for the
collocation type of solution , while the l~~l$ error of the l)ira c metLid was still
useful (fl’3) . (From Sjoberg, 1975 .)

Table 8.5

HMS Pred iction Errors for Molodenskii ’s Model

No. of Collocation Dira c Method
obs. C ~ g C ~ g

/m/ /mgal / /m/ /mgal/

93 0.01 1. 4 0. 59 0.12 1. 8 0.90
99 11. 4 ,. 1.3

* Depth to the Bjerhammar Sphere = lOm. No. of prediction points 37.
c~~ = 2n+ 1. Refe rence: Sj 3berg (1975 , section 19.2.3) .

9. Conclusions

The pu rpose of this report has been to compa re some methods of
A. Ejerhammar with collocation for the solution of the bound a ry value problem in
physical geodesy. In practice , the nu mber of observations are f in i te  (“d i sc rete
boundary value problem”). In the present application collocation is most freqli ”r.tl%
ident ified as Wiener-Hop! predictio n of stochastic processes , in which case the
covariance functions are assumed to be known (homogeneous and isotropic) . The
main problem is therefore to f ind the appropriate covariance functions . Rigorously
this has been proved to be an impossible task , because of the non-ergodic ity of the
empirical covariance functions ( Lauritzen , 1973) .
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Bjerhamma r ’s methods are based on Poisson ’s integral equation arid
Stokes ’ formula. For a finite set of observations there is always a fictitiou s field
(~ .g*) at an internal sphere that satisfies the integral equation. In Bjerhamma r ’s
applications Ag has originally been cons idered as mean anomalies over blocks of
certain sizes at the internal sphere (the Bjerhamma r sphe re) . Dependent on the
nu mber of such blocks , di ffe rent types of solu t ions of the problem are obta ined.
If the number of blocks (N) are less than the number of observations (m) , a uniqu c
solution is given fro m adjustment by elements. For N > m a uniqu e solution is
given by condition adjustment, wh ich solution minimizes the norm of the unknowns
(~ g*). In the special case N -. and well-behaving surface elements we have shov~n
that the minimum norm solution of Bjerhammar (~~~g* minimum) approaches the
solution by collocation with the degree variances equal to 2n+1. Fu rthermore , this
proof has been generalized to yie ’.d, that for each set c ~, in collocation, Lher~ ~s a
corresponding minimu m norm ~~ ~in the generalized Bjerhamr~ .r approach (section
2.2). Thus the problem of selecting the degree variances in LOI1S cation is identical
wi th the problem of selecting the minimum no rm in the Bj erhammar method . It
should be stated tha t already Kraru p (1969) rega rded collocation as a generalized
app roximation for a spec ified m inimum norm.

A di fferent type of solution , called reflexive prediction , was introduced
by Bjerha mmar (1974). In this method the external gravity field is assumed to be
generated at a priori selected fictitious carrie r points , on or outside the Bjerhammar
sphere. Once the carrie r po ints and the sphere are defined , Poisson ’s integral
equation can be applied rigo rously , and the result is a set of l inear equations. If all
ca rrier points are located at the inte rl-lal sphe re, the method is called the Dirac
approach. Due to the arbitra ry location and number of carrier points, a wide varict~
of solutions are possible. Of spec ial interest are filtering (less number of carrier
points than observations) and the non-singular Dirac method (see below) .

In this report we have , first of all , compared colloca tion and the non-
singula r Dira c approach w ith carrier points located at the intersections of the inte rnal
sphe re with the radius vectors of the observations. The coeffic ient matrix of the
la tter method is non-symmetric in contrast to the fo rmer. Moreover it was shown
in section 2 that for a constant geocentric radiu s of all observations in an area (and
e n = 2 n +  1) the two methods give identical prediction results for:

(9.1) h 0 = 2 h 8

where h 0 and h8 are the depths to the Bjerhammar sphe re in the Dirac method and
collocation , respec tively. Thi s result has been verified to hold also for approxim ately
constant geocentric radiu s of the observations (section 8).
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It was demonstrated in sections 3 and 4 that the nu mer ical stability of
the solutions differs for the two methods (collocation and Dirac) . For a given
radius of the Bjerhamma r sphe re the Dirac method is more stable. In the numerical
example of section 8 it was found that for Poisson ’s kernel (c ,~ = 2n+ 1), the con- 

.5

di tionings of the two methods are equal provided tha t fo rmula (9. 1) is satisfied. For
this kernel function the solution by collocation is twice as sensitive to the choice of
Bjerhammar sphere as the solution by the impulse method , a fact tha t is important
for the solution of a large system with a dense distriltition of the obse rvations.

In the continuou s case (with observations covering all the su rface of the
ea rth ) we have found (section 6) that all predictions with the generalized Dira c
method and collocation are uniqu e for various sets of positive c ~ (C n ) ,  wheneve r
the solutions exist. This result may be regarded as a consequence of Stokes ’
theorem . In general , however, the intermediate solutions u~ and X do not exist
in the continuous case . The existence of the solutions requires that the degree
variances of the observations are at most of magnitude n~~, a cond ition which is not
satisfied for the gravity field of the earth accord ing to Kaula ’s rule . Approximate
solutions may be found , for example , by adding a positive constant to the kernel
function. In the same way it was found in section 6. 3 that a solution n-lay exist when
considering that the observations are erroneous. However , these solutions are
statistically biased. If collocation is carried out by solving the Wiener-Hop! integral
equation, a convergent solution is obtained ou tside a sphe re (all observations on the
sphere) . However, inside the bounding sphere of the real earth , the convergence is
still not proved.

It should be noted that the dete rm inistic approache s by Bj erh ammar  through
Po isson ’s and Stokes ’ formulae do not provide estimated prediction errors , as is the
case in the stochastic process app roach (i. e. collocation accord i ng to Moritz).  How-
ever , as the uncerta inty of the covariance functions has a direct impact on the error
estimates, these estimates might be of l imi te d value.

For large systems the free choice of carrier points in reflexive pred iction
might be advantageous (filtering is possible) . However , experiences by Bjerhamma r
(1977b) indicate tha t numerical difficulties n~ay occur in the filtering process , due to
ill-conditioning.

Finally, we lik e to mention that the original approaches of Bjerhammar
are des igned to solve problems in physical geodesy, fi rst of all the geodetic boundary
problem, for gravity anomalies as the only sourc e of data. However , it is not diff icul t
to modify the methods in order to take othe r types of geophysical information into
account. Thus, both collocation and Bjerhammar ’s methods possess a flexibilit y for
the processing of heterogeneous data.
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10. Extensions and Recommendations

This study has shown that reflexive prediction ( the Dirac method) is less
sensitive to changes of the radius of the inte rnal sphere than collocation for the
particular kernel and covariance function s with c = c = 2n+1. The prediction
results and the stability of the two methods are the same , if collocation is applied
wi th half the depth to the Bjerhamma r sphere used in reflexive prediction. \Ve
recommend these comparisons to be carried out for other covariance functions .
Of spec ial interest would be to compare an empirical covariance function with a
best fi tting kernel function (ef. Sj~berg, 1975, section 18) .

Special attention should be paid to the relation between the distribution of
the observations and the optimu m radius of the l3jerhamma r sphere for .‘arioas
covariance (kernel) functions .

A procedu re to estim ate the prediction errors in reflexive p red iction is
of interest for the user of the method. In order to reduce the bias of the predictions ,
we recommend the use of formu la (6.31) in all applications of collocation to the
geodetic boundary problem and related problems in physical geodesy. A corresponding
fo rmula should be used in reflexive prediction , if the ke rnel function is modified to
take noise into account.

Theoretically, it is of interest to reveal whethe r the Wiener-Hopf type of
predictions [formulae (6. 2 4 ) ,  (6. 2 5 ) ,  (6.26 a—b) J converges when applied to a
continuous field of observations at the su rface of the earth .

_  . - -
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Appendix

The Addition Theorem for Spher ical Harmonic s:

n

(A. 1) P~ (cos ~ ~) = _L
~~~) Y~~ (0 , X 1) Y~~ (0k ,  A k )

where

c o s mA  m 0
(A. 1) Y~, (6 ,A) = ~~~~~ (Co s 0) ~I-

sin Im IA ~~ 
. 0

(O ,A )  = spherical coordinates (colatitude
and longitude)

(A.2) 
~~~~~~ 

Y~ Y.~ d ~~ = -r 6 :~‘

= the uni t  sphe re
6 = K ronecke r ’s delta

Corolla ry A. 1:

1 ~~ 1(A .3)  r— j  P~ (cOS~.. 1k) P~’ (eos 4~ k) d O k = P~(cos~~13) x ô~ ’

The corollary follows fro m (A. 1’ and ~~\ .  2) .

Proposi tion A.1:

If A is a matrix f dimension s (m x N), whe re

(A)~k = 
~~~r~~o~~~

2fl
~~~ 

/~~~ ~~~~~~~~ (CoS~b j k )~~~O~
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and

Q = 4 n
(

and

= 4ri

k I

then

2 ni- 2

u r n  (A Q A 1) 1~ = C (—f---
) P~ (COS ~r 1r~

n=O

x ~~~~ o
IC IC

Proof:

( A Q A  )~ = 4 r ~ (A)lk (A) jk ~~~~~~
k = I

= 

Ic= ’k 

~~ /~~n+1) F~ ,~ P~(cos 
~ Ik) ~~

’ 
/~~~~~~i) ~/~-;~:-(~~~ )

fl + 2
p.~. (coS ~~~j k )  &7k

For N -
~ in such a way that max -. 0 the summation over k becomes the

corresponding integra l , so that:

n~ 2

l im ( A Q .’\ T )j j  = ‘5’ J(2 n+1)(2fl+ 1) J~~~~’ ( . )  (-
~

) x

~ $$ P~~(cos~~j k) Pfl’ (cos~~ k) d a k
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Corolla ry A. 1 finally yields :

lim ( A Q A ~) ij  = V c , (—L~_) P~ (cos~~1~)
r r o

P roposition A .2

N — a I m I + 2N’Y _ INC.~(A.4) ~~( m - ~
-
~~~t e~~’~~~’

8 (se ”’~ ) ~~~~~~~~ N 
_________ + S 

— I N ( Ø~~1_s N e~ 1— s ~~e

for 0 ~ s < 1  and ~ = [t~~ = intege r pa rt of 1~!1, and ~ 
if m � 0

Proof:

Let us substitute j of (A . I) by k - ~~ . Then wi obtain in the left member :

~~ i -N  N~~ I e 1 ( M ~~)~ s 1 + s 2

where

S1 = 

~~~~~ 

tø)~~ = (se~~ ) I’ ~~~~ / [1~ (se~~ ) N 
]

= (se~ ~~~~ )
N ~ I~ ~ 

(se 1~~)~~ (Se~~~~ ~ I m !  / ~ i - (se t~~N I

Corol~~ y A.2 :

(A .5) 
~~~s ~ 

+ 
~ L (5 N !-~~~~ N ) / ( I _ S N

The proof follows directly from the proposition for ~) = 0 .
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Corolla ry A. 3,

(A. 6) u r n  ‘5’ s I1—NjI 
~~~~~~ = ~~iui e~ 4’

The p roof follows directly fro m (A.4) when considering that a -~0, N = x .

.~~ 9poSition A. 3:

If

= 

k~~~~
_ :

~~~ 

e~’~
9
~~ 

8k)

6k = 2ri k/N
6~~= 2 n j / m
N = p m  p = i n t e ger

and
= 0

then

S(m , N , s) = N ’ 5~ ‘5’ A~ A ik - 2N ’5’ A~~

j j  k 1  k = 1

equals
2N-2~S(m ,N ,s) = [(2_m)(1+sN ) + 2m 1—s 

_
~~~~ 

1—s 
+

(1_ 525(1 8
2N- 

) (1 —S 2) ( 1—s ~~~
1)

+ ~~-~~~~- — / ( 1 _ S N )
1—s ’ I — s

Proof: 
.5

For 9 q = 0 we have:
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(A.7)  B~= N2T Aqk A JIC = V ~ I~I -  I
~~

I
e I

~~
9i 

~ e ’(
~~ ~~~ =

krr l

= I~~~~~
’
~~~~ 

IflhlNrI~~ 1(C1+N r)6 j = r~ V s ~
h1 

~~~~~~~~~~~~~

and

(A.8) B~ = Nrn~
’ s~ ‘ ‘ s t~~’~

Inserting (A. 5) into (A. 7) for 6 
~

= 0, we obtain:

N ‘5’ A 1k = ‘5’ 51n +Nr I  
= j~ V (S

2 1 a
~ + 

N +~~~N =
k = 1 n = — ~ t = — 

I — S

Nk+ N— 1

= ~
.J

~~[ i — s ~+ 2’5’ ‘5’ (s 2~~ k + sN
~~ )i

k 0  flr~~ k

= __L.~ L— 1 _ sN + 2 ’ 5’ ~ (.~~
_ 1

~ k (2N— 1)k+2N-2 
+ 2 N~~~sN + k 

=

= ._L
~r~ r-i _5N~~ 2 ( l_ s

2N_)
~~ +1—s L. ( 1 5

2)( 1 5
2N—1

) 1 s

In the same way we obtain from (A.8):

1 2P4 —2m N
B~ = 

j ~ [_1 _ s +2 
(1-S~~ (1~s~~~’) +

—79—

~

- -

~

.—- .-

~

.5_ _ - ~~~~~-- _~~~~~~~~~~~ - - - . 5 .-- -~~~~~~~~~ . - - -_ - ~~~~~~~~~~~~~ -- --- —--.5---, .5



I
so that

S(m , N ,s ) =  ~~ V B j _ 2 N ~~~ A j k2

= [_m_rns N + 2m + ~~~~~~ 2 + 2sN 
- 

4 (l_ s 2N _ 2
) 

- /~ i— s~( 1—S )(1—s ~ 
15  ( 1_S 2)(1_s 2 ) I—s

Proposition A.4 :

If

~ g ( & ) =  b cos ( t 9 ) +  c Sin ( f O )  ,

and

~~ (0) —~~~~ — vf , . ( 9 ) e 1LO + !Vt , m (9) C~~~~U2~~ UL, i

where

a~ = ~~(b - ic) a~~ = ~~ b+ Ic)

~~~~ (6 ) =  ‘5’

and

u~, m = vL,i (O)

then

5 (~~~-~~~ )2 d 6  SL if £� ~~ p , p 1, 2,
= { 2

5 ~~~~~2 d 6 + 
2(1+$) 

S,~ if 2= .
~~~~

- p

where
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= 1 + !.~~~~ . 1+s~~~
4
~ — 1—s m 

2 s~~~£ l+5m (1+s~~
2
~)
2 

l+5
m_ 2

~

rL 1n = - L J m
m

$= (c/b) 2

Proof:

= 
~~~~ 5~~~~g~ d O  = (b~ +

12 = 
~~~ 5 (~~~ 

- ~ g) 2 d O  = 
~~ 5 (Ej ~ + ~~~~~~~~ 2 E~ Ez)d 0 = 121 + I~ 2 + I~~

where

= a2 (~&. — i) c~~°

= a-~ (L~. _  i)  e
_ 1

~ O
u~

and

1 ai F u~
(2 )  / u~~— 2 s~ /uL J if £ =  rn

121 = _ $~~ ‘ de =  { 2
2’~ 0 ()th C t~WiS C

1 r ? d 9 
~ a~4 ~~2

( 2) /u~
2 — 2s ~

‘ /u~ J if £ = .!!i p

2 ’  ~ 0 otherw ise

I = ~~ . .  $ ~ 
C- d 6 = 2 a~ a- ~ ~1 + u~~~/uj~ - 2 s A’2 i

ur)(s) = u2(S2)

The proposition readily follows for:

= ( 1 21 + 122 + I2~~)/I 1

—si —
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and

(a2 + a_ 2) 2 = b2/4 , a2 a-2 = (b2 + c2)/4
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